Effects of relative volume-ratios on dynamic performance of a direct-heated supercritical carbon-dioxide closed Brayton cycle in a solar-thermal power plant

[1]  Eckhard Lüpfert,et al.  Advances in Parabolic Trough Solar Power Technology , 2002 .

[2]  Andrew G. Alleyne,et al.  Control-oriented modeling and analysis of automotive transcritical AC system dynamics , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[3]  Ibrahim Dincer,et al.  Thermal Energy Storage , 2004 .

[4]  M. McLinden,et al.  NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 8.0 , 2007 .

[5]  Pierce E. C. Gordon,et al.  Thermal Energy for Lunar In Situ Resource Utilization: Technical Challenges and Technology Opportunities , 2011 .

[6]  S. Kalogirou A detailed thermal model of a parabolic trough collector receiver , 2012 .

[7]  Daniel Favrat,et al.  Transcritical or supercritical CO2 cycles using both low- and high-temperature heat sources , 2012 .

[8]  D. Fernandes,et al.  Thermal energy storage: “How previous findings determine current research priorities” , 2012 .

[9]  G. Kumaresan,et al.  Performance studies of a solar parabolic trough collector with a thermal energy storage system , 2012 .

[10]  Peter A. Jacobs,et al.  Dynamic characteristics of a direct-heated supercritical carbon-dioxide Brayton cycle in a solar thermal power plant , 2013 .

[11]  Changying Zhao,et al.  A review of solar collectors and thermal energy storage in solar thermal applications , 2013 .

[12]  P. Sánchez,et al.  Characterization of different heat transfer fluids and degradation study by using a pilot plant device operating at real conditions , 2013 .

[13]  Huili Zhang,et al.  Concentrated solar power plants: Review and design methodology , 2013 .