Azumaya Monads and Comonads

The definition of Azumaya algebras over commutative rings \(R\) requires the tensor product of modules over \(R\) and the twist map for the tensor product of any two \(R\)-modules. Similar constructions are available in braided monoidal categories, and Azumaya algebras were defined in these settings. Here, we introduce Azumaya monads on any category \(\mathbb{A}\) by considering a monad \((F,m,e)\) on \(\mathbb{A}\) endowed with a distributive law \(\lambda: FF\to FF\) satisfying the Yang–Baxter equation (BD%please define -law). This allows to introduce an opposite monad \((F^\lambda,m\cdot \lambda,e)\) and a monad structure on \(FF^\lambda\). The quadruple \((F,m,e,\lambda)\) is called an Azumaya monad, provided that the canonical comparison functor induces an equivalence between the category \(\mathbb{A}\) and the category of \(FF^\lambda\)-modules. Properties and characterizations of these monads are studied, in particular for the case when \(F\) allows for a right adjoint functor. Dual to Azumaya monads, we define Azumaya comonads and investigate the interplay between these notions. In braided categories (V\(,\otimes,I,\tau)\), for any V-algebra \(A\), the braiding induces a BD-law \(\tau_{A,A}:A\otimes A\to A\otimes A\), and \(A\) is called left (right) Azumaya, provided the monad \(A\otimes-\) (resp. \(-\otimes A\)) is Azumaya. If \(\tau\) is a symmetry or if the category V admits equalizers and coequalizers, the notions of left and right Azumaya algebras coincide.

[1]  H. Porst ON CORINGS AND COMODULES , 2003 .

[2]  Eduardo J. Dubuc,et al.  Kan Extensions in Enriched Category Theory , 1970 .

[3]  P. T. Johnstone,et al.  Adjoint Lifting Theorems for Categories of Algebras , 1975 .

[4]  G. M. Kelly,et al.  Adjunctions whose counits are coequalizers, and presentations of finitary enriched monads , 1993 .

[5]  H. Porst ON CORINGS AND COMODULES , 2003 .

[6]  Nicolai Reshetikhin,et al.  Quantum Groups , 1993 .

[7]  Robert Wisbauer,et al.  Foundations of module and ring theory , 1991 .

[8]  Bachuki Mesablishvili,et al.  Entwining structures in monoidal categories , 2007, 0704.1231.

[9]  B. Pareigis Non-additive ring and module theory IV The Brauer group of a symmetric monoidal category , 1976 .

[10]  Stephen Lack,et al.  Coalgebras, braidings and distributive laws , 2004 .

[11]  Yinhuo Zhang,et al.  The Brauer group of a braided monoidal category , 1998 .

[12]  Tomasz Brzezinski,et al.  MONADS AND COMONADS ON MODULE CATEGORIES , 2008, 0804.1460.

[13]  M. Rafael Separable functors revisited , 1990 .

[14]  Robert Wisbauer,et al.  NOTES ON BIMONADS AND HOPF MONADS , 2010, 1010.3628.

[15]  F. Guzmán Cointegrations, relative cohomology for comodules, and coseparable corings , 1989 .

[16]  Robert Wisbauer,et al.  QF functors and (co)monads , 2013 .

[17]  M. Sobral RESTRICTING THE COMPARISON FUNCTOR OF AN ADJUNCTION TO PROJECTIVE OBJECTS , 1983 .

[18]  B. Pareigis Non-additive Ring and Module Theory , 1977 .

[19]  R. Larson Coseparable Hopf algebras , 1973 .

[20]  Juan Cuadra,et al.  A Sequence to Compute the Brauer Group of Certain Quasi-Triangular Hopf Algebras , 2008, Appl. Categorical Struct..

[21]  Ross Street,et al.  Coherence of tricategories , 1995 .

[22]  J. Fisher-Palmquist The Brauer group of a closed category , 1975 .

[23]  Robert Wisbauer,et al.  Bimonads and Hopf monads on categories , 2007, 0710.1163.

[24]  J. Álvarez,et al.  Weak Hopf algebras and weak Yang–Baxter operators , 2008 .

[25]  B. Torrecillas,et al.  The Brauer Group of a Cocommutative Coalgebra , 1995 .

[26]  D. Ştefan,et al.  Examples of Para-cocyclic Objects Induced by BD-Laws , 2007, 0801.0033.

[27]  R. Wisbauer,et al.  Galois functors and entwining structures , 2009, 0909.5590.

[28]  Robert Wisbauer,et al.  Algebras Versus Coalgebras , 2008, Appl. Categorical Struct..

[29]  Bachuki Mesablishvili,et al.  MONADS OF EFFECTIVE DESCENT TYPE AND COMONADICITY , 2006 .