A low-Mach number fix for Roe's approximate Riemann solver
暂无分享,去创建一个
[1] Ephane Dellacherie,et al. CHECKERBOARD MODES AND WAVE EQUATION , 2009 .
[2] Bernd Einfeldt. Ein schneller Algorithmus zur Lösung des Riemann-Problems , 2006, Computing.
[3] Miloslav Feistauer,et al. On a robust discontinuous Galerkin technique for the solution of compressible flow , 2007, J. Comput. Phys..
[4] Felix Rieper,et al. On the dissipation mechanism of upwind-schemes in the low Mach number regime: A comparison between Roe and HLL , 2010, J. Comput. Phys..
[5] Philippe Fillion,et al. FLICA-OVAP: A new platform for core thermal–hydraulic studies , 2011 .
[6] Ralf Hartmann,et al. A discontinuous Galerkin method for inviscid low Mach number flows , 2009, J. Comput. Phys..
[7] Cécile Viozat,et al. Implicit Upwind Schemes for Low Mach Number Compressible Flows , 1997 .
[8] Philip L. Roe,et al. Characteristic time-stepping or local preconditioning of the Euler equations , 1991 .
[9] E. Turkel,et al. Preconditioned methods for solving the incompressible low speed compressible equations , 1987 .
[10] Xue-song Li,et al. An All-Speed Roe-type scheme and its asymptotic analysis of low Mach number behaviour , 2008, J. Comput. Phys..
[11] E. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .
[12] C. L. Merkle,et al. The application of preconditioning in viscous flows , 1993 .
[13] P. Lax. Weak solutions of nonlinear hyperbolic equations and their numerical computation , 1954 .
[14] Philipp Birken,et al. Stability of Preconditioned Finite Volume Schemes at Low Mach Numbers , 2005 .
[15] G. Sod. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .
[16] A. Majda,et al. Compressible and incompressible fluids , 1982 .
[17] H. Guillard,et al. On the behaviour of upwind schemes in the low Mach number limit , 1999 .
[18] Philip M. Gresho,et al. On the theory of semi‐implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: Theory , 1990 .
[19] Georg Bader,et al. The influence of cell geometry on the accuracy of upwind schemes in the low mach number regime , 2009, J. Comput. Phys..
[20] H. Guillard,et al. On the behavior of upwind schemes in the low Mach number limit: II. Godunov type schemes , 2004 .
[21] Stéphane Dellacherie,et al. The influence of cell geometry on the Godunov scheme applied to the linear wave equation , 2010, J. Comput. Phys..
[22] Dimitris Drikakis,et al. On entropy generation and dissipation of kinetic energy in high-resolution shock-capturing schemes , 2008, J. Comput. Phys..
[23] B. Einfeldt. An efficient algorithm for the solution to the Riemann problem , 1987 .
[24] M. Tapp,et al. A non‐hydrostatic mesoscale model , 1976 .
[25] C. Rhie,et al. Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation , 1983 .
[26] Jörn Sesterhenn,et al. On the Cancellation Problem in Calculating Compressible Low Mach Number Flows , 1999 .
[27] Chi-Wang Shu. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .
[28] Stéphane Dellacherie,et al. Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number , 2010, J. Comput. Phys..
[29] Hervé Guillard. On the behavior of upwind schemes in the low Mach number limit. IV: P0 approximation on triangular and tetrahedral cells , 2009 .
[30] R. Klein. Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics , 1995 .
[31] R. J. R. Williams,et al. An improved reconstruction method for compressible flows with low Mach number features , 2008, J. Comput. Phys..