A low-Mach number fix for Roe's approximate Riemann solver

We present a low-Mach number fix for Roe's approximate Riemann solver (LMRoe). As the Mach number Ma tends to zero, solutions to the Euler equations converge to solutions of the incompressible equations. Yet, standard upwind schemes do not reproduce this convergence: the artificial viscosity grows like 1/Ma, leading to a loss of accuracy as Ma->0. With a discrete asymptotic analysis of the Roe scheme we identify the responsible term: the jump in the normal velocity component @DU of the Riemann problem. The remedy consists of reducing this term by one order of magnitude in terms of the Mach number. This is achieved by simply multiplying @DU with the local Mach number. With an asymptotic analysis it is shown that all discrepancies between continuous and discrete asymptotics disappear, while, at the same time, checkerboard modes are suppressed. Low Mach number test cases show, first, that the accuracy of LMRoe is independent of the Mach number, second, that the solution converges to the incompressible limit for Ma->0 on a fixed mesh and, finally, that the new scheme does not produce pressure checkerboard modes. High speed test cases demonstrate the fall back of the new scheme to the classical Roe scheme at moderate and high Mach numbers.

[1]  Ephane Dellacherie,et al.  CHECKERBOARD MODES AND WAVE EQUATION , 2009 .

[2]  Bernd Einfeldt Ein schneller Algorithmus zur Lösung des Riemann-Problems , 2006, Computing.

[3]  Miloslav Feistauer,et al.  On a robust discontinuous Galerkin technique for the solution of compressible flow , 2007, J. Comput. Phys..

[4]  Felix Rieper,et al.  On the dissipation mechanism of upwind-schemes in the low Mach number regime: A comparison between Roe and HLL , 2010, J. Comput. Phys..

[5]  Philippe Fillion,et al.  FLICA-OVAP: A new platform for core thermal–hydraulic studies , 2011 .

[6]  Ralf Hartmann,et al.  A discontinuous Galerkin method for inviscid low Mach number flows , 2009, J. Comput. Phys..

[7]  Cécile Viozat,et al.  Implicit Upwind Schemes for Low Mach Number Compressible Flows , 1997 .

[8]  Philip L. Roe,et al.  Characteristic time-stepping or local preconditioning of the Euler equations , 1991 .

[9]  E. Turkel,et al.  Preconditioned methods for solving the incompressible low speed compressible equations , 1987 .

[10]  Xue-song Li,et al.  An All-Speed Roe-type scheme and its asymptotic analysis of low Mach number behaviour , 2008, J. Comput. Phys..

[11]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[12]  C. L. Merkle,et al.  The application of preconditioning in viscous flows , 1993 .

[13]  P. Lax Weak solutions of nonlinear hyperbolic equations and their numerical computation , 1954 .

[14]  Philipp Birken,et al.  Stability of Preconditioned Finite Volume Schemes at Low Mach Numbers , 2005 .

[15]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[16]  A. Majda,et al.  Compressible and incompressible fluids , 1982 .

[17]  H. Guillard,et al.  On the behaviour of upwind schemes in the low Mach number limit , 1999 .

[18]  Philip M. Gresho,et al.  On the theory of semi‐implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: Theory , 1990 .

[19]  Georg Bader,et al.  The influence of cell geometry on the accuracy of upwind schemes in the low mach number regime , 2009, J. Comput. Phys..

[20]  H. Guillard,et al.  On the behavior of upwind schemes in the low Mach number limit: II. Godunov type schemes , 2004 .

[21]  Stéphane Dellacherie,et al.  The influence of cell geometry on the Godunov scheme applied to the linear wave equation , 2010, J. Comput. Phys..

[22]  Dimitris Drikakis,et al.  On entropy generation and dissipation of kinetic energy in high-resolution shock-capturing schemes , 2008, J. Comput. Phys..

[23]  B. Einfeldt An efficient algorithm for the solution to the Riemann problem , 1987 .

[24]  M. Tapp,et al.  A non‐hydrostatic mesoscale model , 1976 .

[25]  C. Rhie,et al.  Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation , 1983 .

[26]  Jörn Sesterhenn,et al.  On the Cancellation Problem in Calculating Compressible Low Mach Number Flows , 1999 .

[27]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[28]  Stéphane Dellacherie,et al.  Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number , 2010, J. Comput. Phys..

[29]  Hervé Guillard On the behavior of upwind schemes in the low Mach number limit. IV: P0 approximation on triangular and tetrahedral cells , 2009 .

[30]  R. Klein Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics , 1995 .

[31]  R. J. R. Williams,et al.  An improved reconstruction method for compressible flows with low Mach number features , 2008, J. Comput. Phys..