Real-time processing of stabilizer measurements in a bit-flip code

Although qubit coherence times and gate fidelities are continuously improving, logical encoding is essential to achieve fault tolerance in quantum computing. In most encoding schemes, correcting or tracking errors throughout the computation is necessary to implement a universal gate set without adding significant delays in the processor. Here, we realize a classical control architecture for the fast extraction of errors based on multiple cycles of stabilizer measurements and subsequent correction. We demonstrate its application on a minimal bit-flip code with five transmon qubits, showing that real-time decoding and correction based on multiple stabilizers is superior in both speed and fidelity to repeated correction based on individual cycles. Furthermore, the encoded qubit can be rapidly measured, thus enabling conditional operations that rely on feed forward, such as logical gates. This co-processing of classical and quantum information will be crucial in running a logical circuit at its full speed to outpace error accumulation.

[1]  B. Reichardt Improved magic states distillation for quantum universality , 2004, quant-ph/0411036.

[2]  Daniel Litinski,et al.  Magic State Distillation: Not as Costly as You Think , 2019, Quantum.

[3]  Adam Paetznick,et al.  Universal fault-tolerant quantum computation with only transversal gates and error correction. , 2013, Physical review letters.

[4]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[5]  M. A. Rol,et al.  Protecting quantum entanglement from leakage and qubit errors via repetitive parity measurements , 2019, Science Advances.

[6]  Simon J. Devitt,et al.  Surface code implementation of block code state distillation , 2013, Scientific Reports.

[7]  Tomas Jochym-O'Connor,et al.  Fault-tolerant gates via homological product codes , 2018, Quantum.

[8]  Krysta Marie Svore,et al.  Low-distance Surface Codes under Realistic Quantum Noise , 2014, ArXiv.

[9]  Stephen D. Bartlett,et al.  Stacked codes: Universal fault-tolerant quantum computation in a two-dimensional layout , 2015, 1509.04255.

[10]  Jay M. Gambetta,et al.  Rapid Driven Reset of a Qubit Readout Resonator , 2015, 1503.01456.

[11]  Guanyu Zhu,et al.  Universal logical gates with constant overhead: instantaneous Dehn twists for hyperbolic quantum codes , 2019, Quantum.

[12]  Andrew W. Cross,et al.  Demonstration of quantum advantage in machine learning , 2015, npj Quantum Information.

[13]  Chad Rigetti,et al.  Josephson amplifier for qubit readout , 2011, 1103.1405.

[14]  Ben Reichardt,et al.  Quantum Universality from Magic States Distillation Applied to CSS Codes , 2005, Quantum Inf. Process..

[15]  Raymond Laflamme,et al.  Using concatenated quantum codes for universal fault-tolerant quantum gates. , 2013, Physical review letters.

[16]  C. K. Andersen,et al.  Entanglement stabilization using ancilla-based parity detection and real-time feedback in superconducting circuits , 2019, npj Quantum Information.

[17]  David Poulin,et al.  Magic state distillation at intermediate size , 2017, Quantum Inf. Comput..

[18]  C. K. Andersen,et al.  Low-Latency Digital Signal Processing for Feedback and Feedforward in Quantum Computing and Communication , 2017, 1709.01030.

[19]  David Poulin,et al.  Fault-Tolerant Quantum Computing in the Pauli or Clifford Frame with Slow Error Diagnostics , 2017, 1704.06662.

[20]  John M. Martinis,et al.  State preservation by repetitive error detection in a superconducting quantum circuit , 2015, Nature.

[21]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[22]  Andrew W. Cross,et al.  Implementing a strand of a scalable fault-tolerant quantum computing fabric , 2013, Nature Communications.

[23]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[24]  Raymond Laflamme,et al.  Overhead analysis of universal concatenated quantum codes , 2016, 1609.07497.

[25]  Daniel J. Egger,et al.  Pulsed Reset Protocol for Fixed-Frequency Superconducting Qubits , 2018, Physical Review Applied.

[26]  J. Clarke,et al.  Dispersive magnetometry with a quantum limited SQUID parametric amplifier , 2010, 1003.2466.

[27]  Jeongwan Haah,et al.  Magic state distillation with low space overhead and optimal asymptotic input count , 2017, 1703.07847.

[28]  Bryan Eastin,et al.  Restrictions on transversal encoded quantum gate sets. , 2008, Physical review letters.

[29]  Ling Hu,et al.  Quantum error correction and universal gate set operation on a binomial bosonic logical qubit , 2018, Nature Physics.

[30]  Mazyar Mirrahimi,et al.  Extending the lifetime of a quantum bit with error correction in superconducting circuits , 2016, Nature.

[31]  Giuseppe Schettino,et al.  CORRIGENDUM: Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles , 2013, Scientific Reports.

[32]  Earl T. Campbell,et al.  Quantum computation with realistic magic-state factories , 2016, 1605.07197.

[33]  S. Bravyi,et al.  Magic-state distillation with low overhead , 2012, 1209.2426.

[34]  M. A. Rol,et al.  Repeated quantum error correction on a continuously encoded qubit by real-time feedback , 2015, Nature Communications.

[35]  Tomas Jochym-O'Connor,et al.  Error suppression via complementary gauge choices in Reed-Muller codes , 2017, 1705.00010.

[36]  Christopher Chamberland,et al.  Very low overhead fault-tolerant magic state preparation using redundant ancilla encoding and flag qubits , 2020 .

[37]  David Poulin,et al.  Fault-tolerant conversion between the Steane and Reed-Muller quantum codes. , 2014, Physical review letters.

[38]  H. Bombin Gauge Color Codes: Optimal Transversal Gates and Gauge Fixing in Topological Stabilizer Codes , 2013, 1311.0879.

[39]  Andrew W. Cross,et al.  Fault-tolerant magic state preparation with flag qubits , 2018, Quantum.

[40]  Brian Donovan,et al.  Hardware for dynamic quantum computing. , 2017, The Review of scientific instruments.

[41]  Isaac L. Chuang,et al.  Universal Fault-Tolerant Gates on Concatenated Stabilizer Codes , 2016, 1603.03948.

[42]  Daniel Nigg,et al.  Experimental Repetitive Quantum Error Correction , 2011, Science.

[43]  Panos Aliferis,et al.  Effective fault-tolerant quantum computation with slow measurements. , 2007, Physical review letters.

[44]  Emanuel Knill,et al.  Magic-state distillation with the four-qubit code , 2012, Quantum Inf. Comput..

[45]  C. C. Bultink,et al.  Feedback control of a solid-state qubit using high-fidelity projective measurement. , 2012, Physical review letters.

[46]  Jeongwan Haah,et al.  Distillation with Sublogarithmic Overhead. , 2017, Physical review letters.

[47]  Raymond Laflamme,et al.  Thresholds for Universal Concatenated Quantum Codes. , 2016, Physical review letters.

[48]  V. Negnevitsky,et al.  Repeated multi-qubit readout and feedback with a mixed-species trapped-ion register , 2018, Nature.

[49]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[50]  Jeongwan Haah,et al.  Codes and Protocols for Distilling T, controlled-S, and Toffoli Gates , 2017, Quantum.