Processing of Range Query Using SIMD and GPU

Onedimensional or multidimensional range query is one of the most important query of physical implementation of DBMS. The number of compared items (of a data structure) can be enormous especially for lower selectivity of the range query. The number of compare operations increases for more complex items (or tuples) with the longer length, e.g. words stored in a B-tree. Due to the possibly high number of compare operations executed during the range query processing, we can take into account hardware devices providing a parallel task computation like CPU’s SIMD or GPU. In this paper, we show the performance and scalability of sequential, index, CPU’s SIMD, and GPU variants of the range query algorithm. These results make possible a future integration of these computation devices into a DBMS kernel.

[1]  Antonin Guttman,et al.  R-trees: a dynamic index structure for spatial searching , 1984, SIGMOD '84.

[2]  Tapio Lahdenmäki,et al.  Relational Database Index Design and the Optimizers: DB2, Oracle, SQL Server, et al. , 2005 .

[3]  Hanan Samet,et al.  Foundations of multidimensional and metric data structures , 2006, Morgan Kaufmann series in data management systems.

[4]  Alan Jay Smith,et al.  Multimedia extensions for general purpose microprocessors: a survey , 2005, Microprocess. Microsystems.

[5]  Kai-Uwe Sattler,et al.  GiST scan acceleration using coprocessors , 2012, DaMoN '12.

[6]  Václav Snásel,et al.  Implementation of XPath Axes in the Multi-dimensional Approach to Indexing XML Data , 2004, EDBT Workshops.

[7]  Hans-Peter Kriegel,et al.  The R*-tree: an efficient and robust access method for points and rectangles , 1990, SIGMOD '90.

[8]  Pradeep Dubey,et al.  Efficient implementation of sorting on multi-core SIMD CPU architecture , 2008, Proc. VLDB Endow..

[9]  Toby J. Teorey,et al.  Introduction to physical database design , 2007 .

[10]  Stamatis Vassiliadis,et al.  Performance comparison of SIMD implementations of the discrete wavelet transform , 2005, 2005 IEEE International Conference on Application-Specific Systems, Architecture Processors (ASAP'05).

[11]  Sam Lightstone,et al.  Physical Database Design: the database professional's guide to exploiting indexes, views, storage, and more , 2007 .

[12]  Juan Carlos De Martin,et al.  Fast implementation of the MPEG-4 AAC main and low complexity decoder , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[13]  Tapio Lahdenmäki,et al.  Relational Database Index Design and the Optimizers , 2005 .

[14]  Kenneth A. Ross,et al.  Implementing database operations using SIMD instructions , 2002, SIGMOD '02.

[15]  Peter Chovanec,et al.  Processing of Multidimensional Range Query Using SIMD Instructions , 2011 .

[16]  Wolfgang Lindner,et al.  Current Trends in Database Technology - EDBT 2004 Workshops, EDBT 2004 Workshops PhD, DataX, PIM, P2P&DB, and ClustWeb, Heraklion, Crete, Greece, March 14-18, 2004, Revised Selected Papers , 2004, EDBT Workshops.

[17]  David A. Patterson,et al.  Computer Architecture: A Quantitative Approach , 1969 .

[18]  Alexander Zeier,et al.  SIMD-Scan: Ultra Fast in-Memory Table Scan using on-Chip Vector Processing Units , 2009, Proc. VLDB Endow..

[19]  Michel Barlaud,et al.  Fast k nearest neighbor search using GPU , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[20]  Wenfei Fan,et al.  Keys with Upward Wildcards for XML , 2001, DEXA.

[21]  Robert M. Farber,et al.  CUDA Application Design and Development , 2011 .

[22]  Michael Stonebraker,et al.  C-Store: A Column-oriented DBMS , 2005, VLDB.

[23]  Rudolf Bayer,et al.  Organization and maintenance of large ordered indexes , 1972, Acta Informatica.

[24]  Peter Chovanec,et al.  Optimization of Disk Accesses for Multidimensional Range Queries , 2010, DEXA.

[25]  Michael Freeston A general solution of the n-dimensional B-tree problem , 1995, SIGMOD '95.

[26]  Eyas El-Qawasmeh,et al.  Informatics Engineering and Information Science , 2011 .