Dynamic simulation of freely-draining, flexible bead-rod chains: Start-up of extensional and shear flow1Dedicated to the memory of Professor Gianni Astarita1

We present a study of the rheology and optical properties during the start-up of uniaxial extensional and shear flow for freely-draining, Kramers bead-rod chains using Brownian dynamics simulations. The viscous and elastic contributions to the polymer stress are unambiguously determined via methods developed in our previous publication [1]. The elastic contribution to the polymer stress is much larger than the viscous contribution beyond a time of 5.3l1/N 2 where N is the number of beads in the chain and l1 is the longest relaxation time of the chain. For small Wi (at arbitrary strains) and for small strains (at arbitrary Wi) the stress-optic law is found to be valid. The stress-optic coefficients based on the shear stress and first normal stress difference are equal for all Wi (even when the stress-optic law is not valid) suggesting the stress-optic coefficient is in general a scalar quantity rather than its most general form as a fourth order tensor. We show that a multimode FENE-PM or Rouse model describes the rheology of the bead-rod chains at small strains, while the FENE dumbbell is an accurate model at larger strains. We compare the FENE-PM and FENE model to experimental extensional stress data of dilute polystyrene solutions and find that a multimode FENE-PM with a Zimm relaxation spectrum describes the data well at small strains while a FENE dumbbell with a conformation dependent drag is in quantitative agreement at larger strains. © 1998 Elsevier Science B.V. All rights reserved.

[1]  D. Acierno,et al.  Dilute solution rheology of flexible macromolecules (bead–rod model) , 1974 .

[2]  James Lance Sander Wales,et al.  The application of flow birefringence to rheological studies of polymer melts , 1976 .

[3]  R. Larson Constitutive equations for polymer melts and solutions , 1988 .

[4]  M. Crochet,et al.  Numerical simulation of the motion of a sphere in a boger fluid , 1994 .

[5]  R. Bird Dynamics of Polymeric Liquids , 1977 .

[6]  J. Cascales,et al.  Hydrodynamic interaction effects on the conformation of flexible chains in simple shear flow , 1990 .

[7]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[8]  R. Larson The unraveling of a polymer chain in a strong extensional flow , 1990 .

[9]  L. Treloar The Physics of Rubber Elasticity (J. Meixner) , 1959 .

[10]  D. A. Saville,et al.  Colloidal Dispersions: Equilibrium phase behavior , 1989 .

[11]  P. J. Dotson,et al.  Polymer solution rheology based on a finitely extensible bead—spring chain model , 1980 .

[12]  J. M. Rallison,et al.  Creeping flow of dilute polymer solutions past cylinders and spheres , 1988 .

[13]  E. Hinch,et al.  Do we understand the physics in the constitutive equation , 1988 .

[14]  R. Keiller Entry-flow calculations for the Oldroyd-B and FENE equations , 1993 .

[15]  E. J. Hinch,et al.  Brownian motion with stiff bonds and rigid constraints , 1994, Journal of Fluid Mechanics.

[16]  H. C. Öttinger,et al.  CONNFFESSIT Approach for Solving a Two-Dimensional Viscoelastic Fluid Problem , 1995 .

[17]  D. A. Saville,et al.  Colloidal Dispersions: ACKNOWLEDGEMENTS , 1989 .

[18]  G. Fuller,et al.  The optical and mechanical response of flexible polymer solutions to extensional flow , 1990 .

[19]  L. G. Leal,et al.  Flow birefringence of dilute polymer solutions in two-dimensional flows , 1980 .

[20]  J. Springer,et al.  Light scattering from dilute polymer solutions in shear flow , 1993 .

[21]  E. Hinch Uncoiling a polymer molecule in a strong extensional flow , 1994 .

[22]  B. Berne,et al.  Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics , 1976 .

[23]  B. Brulé Browian dynamics simulation of finitely extensible bead-spring chains , 1993 .

[24]  Hans Christian Öttinger,et al.  Brownian configuration fields and variance reduced CONNFFESSIT , 1997 .

[25]  H. C. Öttinger,et al.  Calculation of viscoelastic flow using molecular models: the connffessit approach , 1993 .

[26]  Hans Christian Öttinger,et al.  A detailed comparison of various FENE dumbbell models , 1997 .

[27]  W. Kuhn,et al.  Bedeutung beschränkt freier Drehbarkeit für die Viskosität und Strömungsdoppelbrechung von Fadenmolekellösungen II , 1945 .

[28]  Robert C. Armstrong,et al.  Dynamics of polymeric liquids: Kinetic theory , 1987 .

[29]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[30]  H. C. Öttinger,et al.  A model of dilute polymer solutions with hydrodynamic interaction and finite extensibility. II. Shear flows , 1988 .

[31]  van den Bhaa Ben Brule,et al.  Simulation of viscoelastic flows using Brownian configuration fields , 1997 .

[32]  J. M. Rallison Dissipative stresses in dilute polymer solutions , 1997 .

[33]  E. Merrill,et al.  Conformation of polyisobutylene in dilute solution subjected to a hydrodynamic shear field , 1969 .

[34]  O. Hassager,et al.  Kinetic theory and rheology of bead‐rod models for macromolecular solutions. I. Equilibrium and steady flow properties , 1974 .

[35]  J. Springer,et al.  Rheooptical detection of shear-induced orientation of high molar mass polystyrene in dilute solution , 1994 .

[36]  David C. Ables,et al.  The role of end-effects on measurements of extensional viscosity in filament stretching rheometers , 1996 .

[37]  Tony W. Liu Flexible polymer chain dynamics and rheological properties in steady flows , 1989 .

[38]  G. McKinley,et al.  Stress relaxation and elastic decohesion of viscoelastic polymer solutions in extensional flow , 1996 .

[39]  G. Fuller Optical Rheometry of Complex Fluids , 1995 .

[40]  J. Goddard,et al.  Streaming birefringence in extensional flow of polymer solutions , 1979 .

[41]  Roland Keunings,et al.  On the Peterlin approximation for finitely extensible dumbbells , 1997 .

[42]  Ronald G. Larson,et al.  Hydrodynamics of a DNA molecule in a flow field , 1997 .

[43]  P. E. Rouse A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers , 1953 .

[44]  W. Philippoff Studies of Flow Birefringence of Polystyrene Solutions , 1963 .

[45]  A. Gast,et al.  Dynamic simulation of freely draining flexible polymers in steady linear flows , 1997, Journal of Fluid Mechanics.

[46]  W. Kuhn,et al.  Beziehungen zwischen elastischen Konstanten und Dehnungsdoppelbrechung hochelastischer Stoffe , 1942 .

[47]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[48]  Paul Grassia,et al.  Computer simulations of polymer chain relaxation via Brownian motion , 1996, Journal of Fluid Mechanics.

[49]  K. Binder,et al.  Scattering function and the dynamics of phase separation in polymer mixtures under shear flow , 1988 .

[50]  P. T. Cummings,et al.  Brownian dynamics simulation of bead-spring chain models for dilute polymer solutions in elongational flow , 1995 .

[51]  C. Manke,et al.  Transient stress responses predicted by the internal viscosity model in elongational flow , 1991 .

[52]  R. Larson The elastic stress in “film fluids” , 1997 .

[53]  O. Hassager Kinetic theory and rheology of bead—rod models for macromolecular solutions. II. Linear unsteady flow properties , 1974 .

[54]  P. Gennes Coil-stretch transition of dilute flexible polymers under ultrahigh velocity gradients , 1974 .

[55]  J. Ferziger Numerical methods for engineering application , 1981 .

[56]  R. Larson The Structure and Rheology of Complex Fluids , 1998 .

[57]  G. Ryskin Calculation of the effect of polymer additive in a converging flow , 1987, Journal of Fluid Mechanics.

[58]  P. Lindner,et al.  Shear-induced deformation of polystyrene coils in dilute solution from small angle neutron scattering 2. Variation of shear gradient, molecular mass and solvent viscosity , 1988 .

[59]  D. F. James,et al.  Analysis of the Rouse model in extensional flow. II. Stresses generated in sink flow by flexible macromolecules and by finitely extended macromolecules , 1983 .

[60]  E. J. Hinch,et al.  Mechanical models of dilute polymer solutions in strong flows , 1977 .

[61]  J. Azaiez,et al.  Numerical simulation of viscoelastic flows through a planar contraction , 1996 .

[62]  Hans Christian Öttinger,et al.  Stochastic Processes in Polymeric Fluids , 1996 .

[63]  M. Mackay,et al.  The stress jump of a semirigid macromolecule after shear: Comparison of the elastic stress to the birefringence , 1995 .

[64]  Daniel N. Ostrov,et al.  A finitely extensible bead-spring chain model for dilute polymer solutions , 1991 .

[65]  R. Oberthür,et al.  Shear induced deformation of polystyrene coils in dilute solution from small angle neutron scattering , 1985 .

[66]  T. Sridhar,et al.  Stress relaxation in uniaxial extension , 1996 .

[67]  H. R. Warner,et al.  Kinetic Theory and Rheology of Dilute Suspensions of Finitely Extendible Dumbbells , 1972 .