Handbook of Numerical Methods for Hyperbolic Problems : Basic and Fundamental Issues

Handbook of Numerical Methods for Hyperbolic Problems explores the changes that have taken place in the past few decades regarding literature in the design, analysis and application of various numerical algorithms for solving hyperbolic equations. This volume provides concise summaries from experts in different types of algorithms, so that readers can find a variety of algorithms under different situations and readily understand their relative advantages and limitations.Provides detailed, cutting-edge background explanations of existing algorithms and their analysisIdeal for readers working on the theoretical aspects of algorithm development and its numerical analysisPresents a method of different algorithms for specific applications and the relative advantages and limitations of different algorithms for engineers or readers involved in applicationsWritten by leading subject experts in each field who provide breadth and depth of content coverage

[1]  E. Tadmor Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems , 2003, Acta Numerica.

[2]  Eitan Tadmor,et al.  ENTROPY STABLE APPROXIMATIONS OF NAVIER-STOKES EQUATIONS WITH NO ARTIFICIAL NUMERICAL VISCOSITY , 2006 .

[3]  Eitan Tadmor,et al.  Arbitrarily High-order Accurate Entropy Stable Essentially Nonoscillatory Schemes for Systems of Conservation Laws , 2012, SIAM J. Numer. Anal..

[4]  Gui-Qiang G. Chen,et al.  Compactness Methods and Nonlinear Hyperbolic Conservation Laws , 2022 .

[5]  S. Osher,et al.  Stable and entropy satisfying approximations for transonic flow calculations , 1980 .

[6]  M. Crandall,et al.  Monotone difference approximations for scalar conservation laws , 1979 .

[7]  P. Lax Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves , 1987 .

[8]  Philippe G. LeFloch,et al.  High-Order Schemes, Entropy Inequalities, and Nonclassical Shocks , 2000, SIAM J. Numer. Anal..

[9]  K. Khalfallah,et al.  Correction d'entropie pour des schémas numériques approchant un système hyperbolique , 1989 .

[10]  Eitan Tadmor,et al.  Construction of Approximate Entropy Measure-Valued Solutions for Hyperbolic Systems of Conservation Laws , 2014, Found. Comput. Math..

[11]  S. Kružkov FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .

[12]  S. Osher Riemann Solvers, the Entropy Condition, and Difference , 1984 .

[13]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[14]  A. Bressan Hyperbolic Systems of Conservation Laws , 1999 .

[15]  Eitan Tadmor,et al.  Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography , 2011, J. Comput. Phys..

[16]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[17]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[18]  C. M. Dafermos,et al.  Hyberbolic [i.e. Hyperbolic] conservation laws in continuum physics , 2005 .

[19]  Chi-Wang Shu,et al.  On a cell entropy inequality for discontinuous Galerkin methods , 1994 .

[20]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[21]  P. Lax,et al.  Systems of conservation equations with a convex extension. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Peter Lax John von Neumann: The early years, the years at Los Alamos, and the road to computing , 2014 .

[23]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[24]  E. Tadmor,et al.  Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .

[25]  R. D. Richtmyer,et al.  A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .

[26]  S. Osher,et al.  Numerical viscosity and the entropy condition , 1979 .

[27]  Eitan Tadmor,et al.  Numerical Viscosity and the Entropy Condition for Conservative Difference Schemes , 1984 .

[28]  Y. Xing Numerical Methods for the Nonlinear Shallow Water Equations , 2017 .

[29]  P. Lax Hyperbolic systems of conservation laws II , 1957 .

[30]  L. Chambers Linear and Nonlinear Waves , 2000, The Mathematical Gazette.

[31]  Peter D. Lax,et al.  On dispersive difference schemes , 1986 .

[32]  A. Bressan,et al.  Vanishing Viscosity Solutions of Nonlinear Hyperbolic Systems , 2001, math/0111321.

[33]  S. Osher,et al.  On the convergence of difference approximations to scalar conservation laws , 1988 .

[34]  James M. Hyman,et al.  On Finite-Difference Approximations and Entropy Conditions for Shocks , 2015 .

[35]  Philippe G. LeFloch,et al.  An entropy satisfying MUSCL scheme for systems of conservation laws , 1996 .

[36]  Bojan Popov,et al.  One-sided stability and convergence of the Nessyahu–Tadmor scheme , 2006, Numerische Mathematik.

[37]  Qiang Zhang,et al.  Stability, Error Estimate and Limiters of Discontinuous Galerkin Methods , 2016 .

[38]  Philippe G. LeFloch,et al.  Fully Discrete, Entropy Conservative Schemes of ArbitraryOrder , 2002, SIAM J. Numer. Anal..

[39]  T. Sonar Classical Finite Volume Methods , 2016 .

[40]  H. Kreiss,et al.  Time-Dependent Problems and Difference Methods , 1996 .

[41]  Alexander Kurganov,et al.  Central Schemes: A Powerful Black-Box Solver for Nonlinear Hyperbolic PDEs , 2016 .

[42]  David I. Ketcheson,et al.  Time Discretization Techniques , 2016 .

[43]  P. Lax Shock Waves and Entropy , 1971 .

[44]  Deep Ray,et al.  Entropy Stable Scheme on Two-Dimensional Unstructured Grids for Euler Equations , 2016 .

[45]  Stanley Osher,et al.  A systematic approach for correcting nonlinear instabilities , 1978 .

[46]  D. Kröner,et al.  Convergence of higher order upwind finite volume schemes on unstructured grids for scalar conservation laws in several space dimensions , 1995 .

[47]  Stanley Osher,et al.  Convergence of Generalized MUSCL Schemes , 1985 .

[48]  P. Lax,et al.  Systems of conservation laws , 1960 .

[49]  Centro internazionale matematico estivo. Session,et al.  Advanced Numerical Approximation of Nonlinear Hyperbolic Equations , 1998 .

[50]  R. LeVeque Numerical methods for conservation laws , 1990 .

[51]  Charalambos Makridakis,et al.  Sharp CFL, Discrete Kinetic Formulation, and Entropic Schemes for Scalar Conservation Laws , 2003, SIAM J. Numer. Anal..

[52]  B. Keyfitz,et al.  Hyperbolic Conservation Laws and L 2 , 2018 .

[53]  Philip L. Roe,et al.  Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks , 2009, J. Comput. Phys..

[54]  Eitan Tadmor,et al.  Energy Preserving and Energy Stable Schemes for the Shallow Water Equations , 2009 .

[55]  Eitan Tadmor,et al.  The numerical viscosity of entropy stable schemes for systems of conservation laws. I , 1987 .

[56]  François Bouchut,et al.  A MUSCL method satisfying all the numerical entropy inequalities , 1996, Math. Comput..

[57]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.

[58]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[59]  Timothy J. Barth,et al.  Numerical Methods for Gasdynamic Systems on Unstructured Meshes , 1997, Theory and Numerics for Conservation Laws.

[60]  Philippe G. LeFloch,et al.  A fully discrete scheme for diffusive-dispersive conservation laws , 2001, Numerische Mathematik.

[61]  R. Sanders On convergence of monotone finite difference schemes with variable spatial differencing , 1983 .

[62]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[63]  M. Mock,et al.  Systems of conservation laws of mixed type , 1980 .

[64]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .