Handbook of Numerical Methods for Hyperbolic Problems : Basic and Fundamental Issues
暂无分享,去创建一个
[1] E. Tadmor. Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems , 2003, Acta Numerica.
[2] Eitan Tadmor,et al. ENTROPY STABLE APPROXIMATIONS OF NAVIER-STOKES EQUATIONS WITH NO ARTIFICIAL NUMERICAL VISCOSITY , 2006 .
[3] Eitan Tadmor,et al. Arbitrarily High-order Accurate Entropy Stable Essentially Nonoscillatory Schemes for Systems of Conservation Laws , 2012, SIAM J. Numer. Anal..
[4] Gui-Qiang G. Chen,et al. Compactness Methods and Nonlinear Hyperbolic Conservation Laws , 2022 .
[5] S. Osher,et al. Stable and entropy satisfying approximations for transonic flow calculations , 1980 .
[6] M. Crandall,et al. Monotone difference approximations for scalar conservation laws , 1979 .
[7] P. Lax. Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves , 1987 .
[8] Philippe G. LeFloch,et al. High-Order Schemes, Entropy Inequalities, and Nonclassical Shocks , 2000, SIAM J. Numer. Anal..
[9] K. Khalfallah,et al. Correction d'entropie pour des schémas numériques approchant un système hyperbolique , 1989 .
[10] Eitan Tadmor,et al. Construction of Approximate Entropy Measure-Valued Solutions for Hyperbolic Systems of Conservation Laws , 2014, Found. Comput. Math..
[11] S. Kružkov. FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .
[12] S. Osher. Riemann Solvers, the Entropy Condition, and Difference , 1984 .
[13] R. D. Richtmyer,et al. Difference methods for initial-value problems , 1959 .
[14] A. Bressan. Hyperbolic Systems of Conservation Laws , 1999 .
[15] Eitan Tadmor,et al. Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography , 2011, J. Comput. Phys..
[16] S. Osher,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .
[17] S. Osher,et al. Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .
[18] C. M. Dafermos,et al. Hyberbolic [i.e. Hyperbolic] conservation laws in continuum physics , 2005 .
[19] Chi-Wang Shu,et al. On a cell entropy inequality for discontinuous Galerkin methods , 1994 .
[20] R. Courant,et al. Methods of Mathematical Physics , 1962 .
[21] P. Lax,et al. Systems of conservation equations with a convex extension. , 1971, Proceedings of the National Academy of Sciences of the United States of America.
[22] Peter Lax. John von Neumann: The early years, the years at Los Alamos, and the road to computing , 2014 .
[23] R. LeVeque. Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .
[24] E. Tadmor,et al. Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .
[25] R. D. Richtmyer,et al. A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .
[26] S. Osher,et al. Numerical viscosity and the entropy condition , 1979 .
[27] Eitan Tadmor,et al. Numerical Viscosity and the Entropy Condition for Conservative Difference Schemes , 1984 .
[28] Y. Xing. Numerical Methods for the Nonlinear Shallow Water Equations , 2017 .
[29] P. Lax. Hyperbolic systems of conservation laws II , 1957 .
[30] L. Chambers. Linear and Nonlinear Waves , 2000, The Mathematical Gazette.
[31] Peter D. Lax,et al. On dispersive difference schemes , 1986 .
[32] A. Bressan,et al. Vanishing Viscosity Solutions of Nonlinear Hyperbolic Systems , 2001, math/0111321.
[33] S. Osher,et al. On the convergence of difference approximations to scalar conservation laws , 1988 .
[34] James M. Hyman,et al. On Finite-Difference Approximations and Entropy Conditions for Shocks , 2015 .
[35] Philippe G. LeFloch,et al. An entropy satisfying MUSCL scheme for systems of conservation laws , 1996 .
[36] Bojan Popov,et al. One-sided stability and convergence of the Nessyahu–Tadmor scheme , 2006, Numerische Mathematik.
[37] Qiang Zhang,et al. Stability, Error Estimate and Limiters of Discontinuous Galerkin Methods , 2016 .
[38] Philippe G. LeFloch,et al. Fully Discrete, Entropy Conservative Schemes of ArbitraryOrder , 2002, SIAM J. Numer. Anal..
[39] T. Sonar. Classical Finite Volume Methods , 2016 .
[40] H. Kreiss,et al. Time-Dependent Problems and Difference Methods , 1996 .
[41] Alexander Kurganov,et al. Central Schemes: A Powerful Black-Box Solver for Nonlinear Hyperbolic PDEs , 2016 .
[42] David I. Ketcheson,et al. Time Discretization Techniques , 2016 .
[43] P. Lax. Shock Waves and Entropy , 1971 .
[44] Deep Ray,et al. Entropy Stable Scheme on Two-Dimensional Unstructured Grids for Euler Equations , 2016 .
[45] Stanley Osher,et al. A systematic approach for correcting nonlinear instabilities , 1978 .
[46] D. Kröner,et al. Convergence of higher order upwind finite volume schemes on unstructured grids for scalar conservation laws in several space dimensions , 1995 .
[47] Stanley Osher,et al. Convergence of Generalized MUSCL Schemes , 1985 .
[48] P. Lax,et al. Systems of conservation laws , 1960 .
[49] Centro internazionale matematico estivo. Session,et al. Advanced Numerical Approximation of Nonlinear Hyperbolic Equations , 1998 .
[50] R. LeVeque. Numerical methods for conservation laws , 1990 .
[51] Charalambos Makridakis,et al. Sharp CFL, Discrete Kinetic Formulation, and Entropic Schemes for Scalar Conservation Laws , 2003, SIAM J. Numer. Anal..
[52] B. Keyfitz,et al. Hyperbolic Conservation Laws and L 2 , 2018 .
[53] Philip L. Roe,et al. Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks , 2009, J. Comput. Phys..
[54] Eitan Tadmor,et al. Energy Preserving and Energy Stable Schemes for the Shallow Water Equations , 2009 .
[55] Eitan Tadmor,et al. The numerical viscosity of entropy stable schemes for systems of conservation laws. I , 1987 .
[56] François Bouchut,et al. A MUSCL method satisfying all the numerical entropy inequalities , 1996, Math. Comput..
[57] R. Eymard,et al. Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.
[58] J. Smoller. Shock Waves and Reaction-Diffusion Equations , 1983 .
[59] Timothy J. Barth,et al. Numerical Methods for Gasdynamic Systems on Unstructured Meshes , 1997, Theory and Numerics for Conservation Laws.
[60] Philippe G. LeFloch,et al. A fully discrete scheme for diffusive-dispersive conservation laws , 2001, Numerische Mathematik.
[61] R. Sanders. On convergence of monotone finite difference schemes with variable spatial differencing , 1983 .
[62] P. Raviart,et al. Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.
[63] M. Mock,et al. Systems of conservation laws of mixed type , 1980 .
[64] P. Roe. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .