FACTORISABLE MULTITASK QUANTILE REGRESSION

A multivariate quantile regression model with a factor structure is proposed to study data with multivariate responses with covariates. The factor structure is allowed to vary with the quantile levels, which is more flexible than the classical factor models. Assuming the number of factors is small, and the number of responses and the input variables are growing with the sample size, the model is estimated with the nuclear norm regularization. The incurred optimization problem can only be efficiently solved in an approximate manner by off-the-shelf optimization methods. Such a scenario is often seen when the empirical loss is nonsmooth or the numerical procedure involves expensive subroutines, for example, singular value decomposition. To show that the approximate estimator is still statistically accurate, we establish a nonasymptotic bound on the Frobenius risk and prediction risk. For implementation, a numerical procedure that provably marginalizes the approximation error is proposed. The merits of our model and the proposed numerical procedures are demonstrated through the Monte Carlo simulation and an application to finance involving a large pool of asset returns.

[1]  Liang Chen,et al.  Quantile Factor Models , 2017, Econometrica.

[2]  N. Packham Structured climate financing: valuation of CDO on inhomogeneous asset pools , 2020, SN Business & Economics.

[3]  W. Härdle,et al.  Estimation and determinants of Chinese banks’ total factor efficiency: a new vision based on unbalanced development of Chinese banks and their overall risk , 2015, Comput. Stat..

[4]  Victor Chernozhukov,et al.  Conditional Quantile Processes Based on Series or Many Regressors , 2011, Journal of Econometrics.

[5]  Furno Marilena,et al.  Quantile Regression , 2018, Wiley Series in Probability and Statistics.

[6]  Chen Huang,et al.  Multivariate factorizable expectile regression with application to fMRI data , 2018, Comput. Stat. Data Anal..

[7]  Mansooreh Mollaghasemi,et al.  Local Rademacher Complexity-based Learning Guarantees for Multi-Task Learning , 2016, J. Mach. Learn. Res..

[8]  Massimiliano Pontil,et al.  Reexamining Low Rank Matrix Factorization for Trace Norm Regularization , 2017, Mathematics in Engineering.

[9]  V. Chernozhukov,et al.  Extremal quantile regression: An overview , 2016, 1612.06850.

[10]  Hui Zou,et al.  Multitask Quantile Regression Under the Transnormal Model , 2016, Journal of the American Statistical Association.

[11]  Massimiliano Pontil,et al.  The Benefit of Multitask Representation Learning , 2015, J. Mach. Learn. Res..

[12]  Aurélien Garivier,et al.  On the Complexity of Best-Arm Identification in Multi-Armed Bandit Models , 2014, J. Mach. Learn. Res..

[13]  Eric Gilleland,et al.  Spatial clustering of summer temperature maxima from the CNRM-CM5 climate model ensembles & E-OBS over Europe , 2015 .

[14]  William B. Nicholson,et al.  VARX-L: Structured Regularization for Large Vector Autoregressions with Exogenous Variables , 2015, 1508.07497.

[15]  W. Härdle,et al.  Factorisable Sparse Tail Event Curves , 2015 .

[16]  Tae-Hwan Kim,et al.  VAR for VaR: Measuring Tail Dependence Using Multivariate Regression Quantiles , 2015, SSRN Electronic Journal.

[17]  Stefano Castruccio,et al.  High-Order Composite Likelihood Inference for Max-Stable Distributions and Processes , 2014, 1411.0086.

[18]  Tengyao Wang,et al.  A useful variant of the Davis--Kahan theorem for statisticians , 2014, 1405.0680.

[19]  L. Briollais,et al.  Application of quantile regression to recent genetic and -omic studies , 2014, Human Genetics.

[20]  Kenneth F. Wallis,et al.  The Two-Piece Normal, Binormal, or Double Gaussian Distribution: Its Origin and Rediscoveries , 2014, 1405.4995.

[21]  Richard A. Levine,et al.  Journal of Computational and Graphical Statistics , 2014 .

[22]  Mathieu Vrac,et al.  Clustering of Maxima: Spatial Dependencies among Heavy Rainfall in France , 2013 .

[23]  B. Salani'e,et al.  Higher-order properties of approximate estimators , 2013 .

[24]  V. V. Buldygin,et al.  The sub-Gaussian norm of a binary random variable , 2013 .

[25]  Massimiliano Pontil,et al.  Excess risk bounds for multitask learning with trace norm regularization , 2012, COLT.

[26]  B. Reich Spatiotemporal quantile regression for detecting distributional changes in environmental processes , 2012, Journal of the Royal Statistical Society. Series C, Applied statistics.

[27]  Richard A. Davis,et al.  Sparse Vector Autoregressive Modeling , 2012, 1207.0520.

[28]  A. Davison,et al.  Statistical Modeling of Spatial Extremes , 2012, 1208.3378.

[29]  A. Lo,et al.  A Survey of Systemic Risk Analytics , 2012 .

[30]  Xi Chen,et al.  Smoothing proximal gradient method for general structured sparse regression , 2010, The Annals of Applied Statistics.

[31]  Joel A. Tropp,et al.  User-Friendly Tail Bounds for Sums of Random Matrices , 2010, Found. Comput. Math..

[32]  Markus K. Brunnermeier,et al.  Federal Reserve Bank of New York , 2009 .

[33]  V. Koltchinskii,et al.  Oracle inequalities in empirical risk minimization and sparse recovery problems , 2011 .

[34]  M. Fuentes,et al.  Journal of the American Statistical Association Bayesian Spatial Quantile Regression Bayesian Spatial Quantile Regression , 2022 .

[35]  R. Tsay,et al.  Quantile Regression Models with Factor-Augmented Predictors and Information Criterion , 2011 .

[36]  A. Belloni,et al.  ℓ[subscript 1]-penalized quantile regression in high-dimensional sparse models , 2011 .

[37]  M. Wegkamp,et al.  Optimal selection of reduced rank estimators of high-dimensional matrices , 2010, 1004.2995.

[38]  T. Blumensath,et al.  Theory and Applications , 2011 .

[39]  V. Koltchinskii,et al.  Nuclear norm penalization and optimal rates for noisy low rank matrix completion , 2010, 1011.6256.

[40]  Tae-Hwan Kim,et al.  VAR for VaR: measuring systemic risk using multivariate regression quantiles , 2010 .

[41]  Martin Jaggi,et al.  A Simple Algorithm for Nuclear Norm Regularized Problems , 2010, ICML.

[42]  R. Vershynin How Close is the Sample Covariance Matrix to the Actual Covariance Matrix? , 2010, 1004.3484.

[43]  Serena Ng,et al.  INSTRUMENTAL VARIABLE ESTIMATION IN A DATA RICH ENVIRONMENT , 2010, Econometric Theory.

[44]  Martin J. Wainwright,et al.  Estimation of (near) low-rank matrices with noise and high-dimensional scaling , 2009, ICML.

[45]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[46]  Martin J. Wainwright,et al.  A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers , 2009, NIPS.

[47]  Jieping Ye,et al.  An accelerated gradient method for trace norm minimization , 2009, ICML '09.

[48]  Martin J. Wainwright,et al.  Sharp Thresholds for High-Dimensional and Noisy Sparsity Recovery Using $\ell _{1}$ -Constrained Quadratic Programming (Lasso) , 2009, IEEE Transactions on Information Theory.

[49]  A. Belloni,et al.  L1-Penalized Quantile Regression in High Dimensional Sparse Models , 2009, 0904.2931.

[50]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[51]  Alexander J. Smola,et al.  Improving maximum margin matrix factorization , 2008, Machine Learning.

[52]  SmolaAlex,et al.  Improving maximum margin matrix factorization , 2008 .

[53]  Holger Dette,et al.  Non‐crossing non‐parametric estimates of quantile curves , 2008 .

[54]  Alexander J. Smola,et al.  Maximum Margin Matrix Factorization for Collaborative Ranking , 2007 .

[55]  Helmut Ltkepohl,et al.  New Introduction to Multiple Time Series Analysis , 2007 .

[56]  P. Friederichs,et al.  Statistical Downscaling of Extreme Precipitation Events Using Censored Quantile Regression , 2007 .

[57]  M. Yuan,et al.  Dimension reduction and coefficient estimation in multivariate linear regression , 2007 .

[58]  Santosh S. Vempala,et al.  The geometry of logconcave functions and sampling algorithms , 2007, Random Struct. Algorithms.

[59]  V. Chernozhukov,et al.  QUANTILE AND PROBABILITY CURVES WITHOUT CROSSING , 2007, 0704.3649.

[60]  R. Koenker,et al.  Regression Quantiles , 2007 .

[61]  Nathan Srebro,et al.  Fast maximum margin matrix factorization for collaborative prediction , 2005, ICML.

[62]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[63]  V. Chernozhukov Extremal Quantile Regression , 2005, math/0505639.

[64]  Paul Doukhan,et al.  WEAK DEPENDENCE: MODELS AND APPLICATIONS TO ECONOMETRICS , 2004, Econometric Theory.

[65]  Tommi S. Jaakkola,et al.  Maximum-Margin Matrix Factorization , 2004, NIPS.

[66]  John Bjørnar Bremnes,et al.  Probabilistic Forecasts of Precipitation in Terms of Quantiles Using NWP Model Output , 2004 .

[67]  B. Cade,et al.  A gentle introduction to quantile regression for ecologists , 2003 .

[68]  J. Stock,et al.  Macroeconomic Forecasting Using Diffusion Indexes , 2002 .

[69]  Stephen P. Boyd,et al.  A rank minimization heuristic with application to minimum order system approximation , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[70]  K. Wallis Asymmetric density forecasts of inflation and the Bank of England's fan chart , 1999, National Institute Economic Review.

[71]  Michael Falk,et al.  A simple approach to the generation of uniformly distributed random variables with prescribed correlations , 1999 .

[72]  G. Reinsel,et al.  Multivariate Reduced-Rank Regression: Theory and Applications , 1998 .

[73]  Keith Knight,et al.  Limiting distributions for $L\sb 1$ regression estimators under general conditions , 1998 .

[74]  P. F. Krause,et al.  Weather and climate extremes , 1997 .

[75]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[76]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[77]  M. Talagrand,et al.  Probability in Banach Spaces: Isoperimetry and Processes , 1991 .

[78]  V. N. Bogaevski,et al.  Matrix Perturbation Theory , 1991 .

[79]  R. Koenker,et al.  M Estimation of Multivariate Regressions , 1990 .

[80]  Rajendra Bhatia,et al.  Norm inequalities for partitioned operators and an application , 1990 .