Spektroskopie trifft Elektrochemie

Traditionell gewinnt die Spektroelektrochemie Einblicke in die elektronische Struktur und die Redoxzustande von Verbindungen. Neue Techniken klaren die Mechanismen katalytischer Reaktionen auf und helfen, die Aktivierungsprozesse kleiner Molekule zu verstehen.

[1]  C. Purohit,et al.  Synthesis, spectral characterization, structures, and oxidation state distributions in [(corrolato)Fe(III)(NO)](n) (n = 0, +1, -1) complexes. , 2014, Inorganic chemistry.

[2]  I. Sazanovich,et al.  Electrochemistry, Chemical Reactivity, and Time-Resolved Infrared Spectroscopy of Donor–Acceptor Systems [(Qx)Pt(papy)] (Q = Substituted o-Quinone or o-Iminoquinone; pap = Phenylazopyridine) , 2014, Inorganic chemistry.

[3]  H. Lang,et al.  (Multi)ferrocenyl Five-Membered Heterocycles: Excellent Connecting Units for Electron Transfer Studies , 2013 .

[4]  J. Fiedler,et al.  Donor-acceptor systems of Pt(II) and redox-induced reactivity towards small molecules. , 2012, Chemical communications.

[5]  W. Kaim Concepts for metal complex chromophores absorbing in the near infrared , 2011 .

[6]  B. Sarkar,et al.  Energy-level tailoring in a series of redox-rich quinonoid-bridged diruthenium complexes containing tris2-pyridylmethyl)amine as a co-ligand. , 2011, Chemistry.

[7]  T. Woike,et al.  Oxidation states and photoinduced metastable states in [Fe(CO)2(NO)2] , 2010 .

[8]  W. Kaim,et al.  Spectroelectrochemistry: the best of two worlds. , 2009, Chemical Society reviews.

[9]  A. Das,et al.  A five-center redox system: molecular coupling of two noninnocent imino-o-benzoquinonato-ruthenium functions through a pi acceptor bridge. , 2009, Journal of the American Chemical Society.

[10]  W. Kaim,et al.  Towards new organometallic wires: tetraruthenium complexes bridged by phenylenevinylene and vinylpyridine ligands. , 2007, Chemistry.

[11]  M. Kaupp,et al.  Where is the spin? Understanding electronic structure and g-tensors for ruthenium complexes with redox-active quinonoid ligands. , 2005, Journal of the American Chemical Society.

[12]  R. Holze Fundamentals and applications of near infrared spectroscopy in spectroelectrochemistry , 2004 .

[13]  C. Lapinte,et al.  Organometallic Mixed-Valence Systems. Electronic Coupling through an Alkyndiyl Bridge Incorporating Methylene Groups , 2004 .

[14]  F. Neese,et al.  o-Iminobenzosemiquinonato(1-) and o-amidophenolato(2-) complexes of palladium(II) and platinum(II): a combined experimental and density functional theoretical study. , 2002, Inorganic chemistry.

[15]  W. Kaim,et al.  Iron versus ruthenium oxidation in 1,1′-bis(diphenylphosphino)ferrocene–ruthenium(II) complexes: EPR and spectroelectrochemical evidence , 2000 .

[16]  C. Lambert,et al.  Ein‐ und zweidimensionale Elektronentransfer‐Prozesse in Oligo(triarylaminen) mit mehreren Redoxzentren , 1998 .

[17]  M. Daněk,et al.  Simple construction of an infrared optically transparent thin-layer electrochemical cell: Applications to the redox reactions of ferrocene, Mn2(CO)10 and Mn(CO)3(3,5-di-t-butyl-catecholate)− , 1991 .