Evolutionary Design of a Robotic Manipulator for a Highly Constrained Environment

This paper presents the design of a manipulator working in a highly constrained workspace. The difficulties implied by the geometry of the environment lead to resort to evolutionary-aided design techniques. As the solution space is likely to be shaped strangely due to the particular environment, a special attention is paid to support the algorithm exploration and avoid negative impacts from the problem formulation, the fitness function or the evaluation. In that respect, a specific genome able to encompass all cases is set up and a constraint compliant control law is used to avoid the arbitrary penalization of robots. The presented results illustrate the methodology adopted to work with the developed evolutionary-aided design tool.

[1]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[2]  Ivo F. Sbalzariniy,et al.  Multiobjective optimization using evolutionary algorithms , 2000 .

[3]  Wan Kyun Chung,et al.  Task based design of modular robot manipulator using efficient genetic algorithm , 1997, Proceedings of International Conference on Robotics and Automation.

[4]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[5]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[6]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[7]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[8]  Philippe Bidaud,et al.  Genetic design of 3D modular manipulators , 1997, Proceedings of International Conference on Robotics and Automation.

[9]  Marco Ceccarelli,et al.  A multi-objective optimum design of general 3R manipulators for prescribed workspace limits , 2004 .

[10]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[11]  Stéphane Doncieux,et al.  Overcoming the bootstrap problem in evolutionary robotics using behavioral diversity , 2009, 2009 IEEE Congress on Evolutionary Computation.

[12]  Herman Bruyninckx,et al.  Open robot control software: the OROCOS project , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[13]  Vincent Padois,et al.  Constraint Compliant Control for a Redundant Manipulator in a Cluttered Environment , 2010 .

[14]  Guillaume Morel,et al.  Optimal design of high dexterity modular MIS instrument for coronary artery bypass grafting , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[15]  Yoshihiko Nakamura,et al.  Inverse kinematic solutions with singularity robustness for robot manipulator control , 1986 .

[16]  Thomas Bäck,et al.  Parallel Problem Solving from Nature — PPSN V , 1998, Lecture Notes in Computer Science.

[17]  Karl Sims,et al.  Evolving virtual creatures , 1994, SIGGRAPH.

[18]  Jan A. Snyman,et al.  Optimum design of a three-dimensional serial robot manipulator , 1999 .

[19]  Marco Ceccarelli,et al.  An optimum design procedure for both serial and parallel manipulators , 2007 .

[20]  A. Liegeois,et al.  Automatic supervisory control of the configuration and behavior of multi-body mechanisms , 1977 .

[21]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[22]  Zbigniew Michalewicz,et al.  Evolutionary Computation 2 , 2000 .

[23]  Patrick Chedmail,et al.  Robot mechanism synthesis and genetic algorithms , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[24]  Olivier Chocron,et al.  Evolutionary design of modular robotic arms , 2008, Robotica.

[25]  Tsuneo Yoshikawa,et al.  Manipulability of Robotic Mechanisms , 1985 .

[26]  Stéphane Doncieux,et al.  Sferesv2: Evolvin' in the multi-core world , 2010, IEEE Congress on Evolutionary Computation.

[27]  Clare Bates Congdon,et al.  GENCEM: a genetic algorithms approach to coordinated exploration and mapping with multiple autonomous robots , 2005, 2005 IEEE Congress on Evolutionary Computation.

[28]  John Bares,et al.  Automated synthesis and optimization of robot configurations: an evolutionary approach , 1999 .

[29]  Jean-Jacques E. Slotine,et al.  A general framework for managing multiple tasks in highly redundant robotic systems , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[30]  Guilin Yang,et al.  Task-based optimization of modular robot configurations: minimized degree-of-freedom approach , 2000 .

[31]  Alexis Drogoul,et al.  SFERES : Un framework pour la conception de systèmes multi-agents adaptatifs , 2002, Tech. Sci. Informatiques.