A Geometric Approach for Multi-Degree Spline

Multi-degree spline (MD-spline for short) is a generalization of B-spline which comprises of polynomial segments of various degrees. The present paper provides a new definition for MD-spline curves in a geometric intuitive way based on an efficient and simple evaluation algorithm. MD-spline curves maintain various desirable properties of B-spline curves, such as convex hull, local support and variation diminishing properties. They can also be refined exactly with knot insertion. The continuity between two adjacent segments with different degrees is at least C1 and that between two adjacent segments of same degrees d is Cd−1. Benefited by the exact refinement algorithm, we also provide several operators for MD-spline curves, such as converting each curve segment into Bézier form, an efficient merging algorithm and a new curve subdivision scheme which allows different degrees for each segment.