The Evolution of the Goddard Profiling Algorithm to a Fully Parametric Scheme

AbstractThe Goddard profiling algorithm has evolved from a pseudoparametric algorithm used in the current TRMM operational product (GPROF 2010) to a fully parametric approach used operationally in the GPM era (GPROF 2014). The fully parametric approach uses a Bayesian inversion for all surface types. The algorithm thus abandons rainfall screening procedures and instead uses the full brightness temperature vector to obtain the most likely precipitation state. This paper offers a complete description of the GPROF 2010 and GPROF 2014 algorithms and assesses the sensitivity of the algorithm to assumptions related to channel uncertainty as well as ancillary data. Uncertainties in precipitation are generally less than 1%–2% for realistic assumptions in channel uncertainties. Consistency among different radiometers is extremely good over oceans. Consistency over land is also good if the diurnal cycle is accounted for by sampling GMI product only at the time of day that different sensors operate. While accounting...

[1]  Graeme L. Stephens,et al.  A Bayesian approach to microwave precipitation profile retrieval , 1995 .

[2]  Joanne Simpson,et al.  Goddard Cumulus Ensemble Model. Part I: Model Description , 1993 .

[3]  N. Grody Classification of snow cover and precipitation using the special sensor microwave imager , 1991 .

[4]  D. Randall,et al.  A Multiscale Modeling System: Developments, Applications, and Critical Issues , 2009 .

[5]  Robert F. Adler,et al.  A Proposed Tropical Rainfall Measuring Mission (TRMM) Satellite , 1988 .

[6]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[7]  Ralph Ferraro,et al.  Status of the TRMM 2A12 Land Precipitation Algorithm , 2010 .

[8]  E. Forgy Cluster analysis of multivariate data : efficiency versus interpretability of classifications , 1965 .

[9]  J. Pinto,et al.  Statistical Assessment of Tropical Convection-Permitting Model Simulations Using a Cell-Tracking Algorithm , 2013 .

[10]  Ivan Csiszar,et al.  Automated Monitoring of Snow Cover over North America with Multispectral Satellite Data , 2000 .

[11]  Norman C. Grody,et al.  Effects of surface conditions on rain identification using the DMSP‐SSM/I , 1994 .

[12]  Eric A. Smith,et al.  Bayesian estimation of precipitating cloud parameters from combined measurements of spaceborne microwave radiometer and radar , 1999, IEEE Trans. Geosci. Remote. Sens..

[13]  M. Satoh,et al.  Evaluation of Precipitating Hydrometeor Parameterizations in a Single-Moment Bulk Microphysics Scheme for Deep Convective Systems over the Tropical Central Pacific , 2014 .

[14]  Filipe Aires,et al.  A Tool to Estimate Land‐Surface Emissivities at Microwave frequencies (TELSEM) for use in numerical weather prediction , 2011 .

[15]  Christian D. Kummerow,et al.  A Passive Microwave Technique for Estimating Rainfall and Vertical Structure Information from Space. Part I: Algorithm Description , 1994 .

[16]  G. Huffman,et al.  A Screening Methodology for Passive Microwave Precipitation Retrieval Algorithms , 1998 .

[17]  A. Hou,et al.  The Global Precipitation Measurement Mission , 2014 .

[18]  Christian D. Kummerow,et al.  A Method for Combined PassiveActive Microwave Retrievals of Cloud and Precipitation Profiles , 1996 .

[19]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[20]  Christian D. Kummerow,et al.  Rain Retrieval from TMI Brightness Temperature Measurements Using a TRMM PR-Based Database , 2006 .

[21]  K. Okamoto,et al.  Rain profiling algorithm for the TRMM precipitation radar , 1997, IGARSS'97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing - A Scientific Vision for Sustainable Development.

[22]  Thomas M. Smith,et al.  Daily High-Resolution-Blended Analyses for Sea Surface Temperature , 2007 .

[23]  Jian Zhang,et al.  National mosaic and multi-sensor QPE (NMQ) system description, results, and future plans , 2011 .

[24]  Ralph Ferraro,et al.  Next generation of NOAA/NESDIS TMI, SSM/I, and AMSR‐E microwave land rainfall algorithms , 2003 .

[25]  Christian D. Kummerow,et al.  Quantifying Global Uncertainties in a Simple Microwave Rainfall Algorithm , 2006 .

[26]  Christian D. Kummerow,et al.  An Observationally Generated A Priori Database for Microwave Rainfall Retrievals , 2011 .

[27]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[28]  Christian D. Kummerow,et al.  Toward a Fully Parametric Retrieval of the Nonraining Parameters over the Global Oceans , 2008 .

[29]  Xiaofan Li,et al.  Evolution, Structure, Cloud Microphysical, and Surface Rainfall Processes of Monsoon Convection during the South China Sea Monsoon Experiment , 2007 .

[30]  Ralph Ferraro,et al.  TRMM 2A12 Land Precipitation Product - Status and Future Plans , 2009 .

[31]  Peter Bauer,et al.  Over-Ocean Rainfall Retrieval from Multisensor Data of the Tropical Rainfall Measuring Mission. Part II: Algorithm Implementation , 2001 .

[32]  G. Tripoli A Nonhydrostatic Mesoscale Model Designed to Simulate Scale Interaction , 1992 .

[33]  James P. Hollinger,et al.  SSM/I instrument evaluation , 1990 .

[34]  Christian D. Kummerow,et al.  The Sensitivity of Rainfall Estimation to Error Assumptions in a Bayesian Passive Microwave Retrieval Algorithm , 2015 .

[35]  Chuntao Liu,et al.  “Warm Rain” in the Tropics: Seasonal and Regional Distributions Based on 9 yr of TRMM Data , 2009 .

[36]  Christian Kummerow,et al.  A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors , 1996, IEEE Trans. Geosci. Remote. Sens..