clampFISH 2.0 enables rapid, scalable amplified RNA detection in situ

[1]  Sydney M. Shaffer,et al.  Subcellular Detection of SARS-CoV-2 RNA in Human Tissue Reveals Distinct Localization in Alveolar Type 2 Pneumocytes and Alveolar Macrophages , 2022, mBio.

[2]  A. Raj,et al.  Pre-determined diversity in resistant fates emerges from homogenous cells after anti-cancer drug treatment , 2021, bioRxiv.

[3]  A. Raj,et al.  Responsiveness to perturbations is a hallmark of transcription factors that maintain cell identity in vitro. , 2021, Cell systems.

[4]  Andrew C. Pawlowski,et al.  Barcoded oligonucleotides ligated on RNA amplified for multiplexed and parallel in situ analyses , 2021, Nucleic acids research.

[5]  Mark E Fornace,et al.  A Unified Dynamic Programming Framework for the Analysis of Interacting Nucleic Acid Strands: Enhanced Models, Scalability, and Speed. , 2020, ACS synthetic biology.

[6]  Michael M. Saint-Antoine,et al.  Gene Networks with Transcriptional Bursting Recapitulate Rare Transient Coordinated High Expression States in Cancer. , 2020, Cell systems.

[7]  Sydney M. Shaffer,et al.  Variability within rare cell states enables multiple paths towards drug resistance , 2020, Nature Biotechnology.

[8]  Marius Pachitariu,et al.  Cellpose: a generalist algorithm for cellular segmentation , 2020, Nature Methods.

[9]  Michael M. Saint-Antoine,et al.  Gene networks with transcriptional bursting recapitulate rare transient coordinated expression states in cancer , 2019, bioRxiv.

[10]  Sydney M. Shaffer,et al.  Genetic screening for single-cell variability modulators driving therapy resistance , 2019, bioRxiv.

[11]  Peng Yin,et al.  SABER enables amplified and multiplexed imaging of RNA and DNA in cells and tissues , 2019, Nature Methods.

[12]  Guo-Cheng Yuan,et al.  Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+ , 2019, Nature.

[13]  Chenglong Xia,et al.  Multiplexed detection of RNA using MERFISH and branched DNA amplification , 2018, Scientific Reports.

[14]  J. Stamatoyannopoulos,et al.  ClampFISH detects individual nucleic-acid molecules using click chemistry based amplification , 2018, Nature Biotechnology.

[15]  S. Hohng,et al.  Accelerated FRET-PAINT microscopy , 2018, Molecular Brain.

[16]  Johannes Stegmaier,et al.  Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust , 2018, Development.

[17]  J. Michael Cherry,et al.  The Encyclopedia of DNA elements (ENCODE): data portal update , 2017, Nucleic Acids Res..

[18]  Lars E. Borm,et al.  The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing , 2017, Science.

[19]  Maximilian T. Strauss,et al.  Fast, Background-Free DNA-PAINT Imaging Using FRET-Based Probes. , 2017, Nano letters.

[20]  G. Church,et al.  Efficient in situ barcode sequencing using padlock probe-based BaristaSeq , 2017, bioRxiv.

[21]  Sydney M. Shaffer,et al.  Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance , 2017, Nature.

[22]  Xiaojun Ren,et al.  Highly specific imaging of mRNA in single cells by target RNA-initiated rolling circle amplification† †Electronic supplementary information (ESI) available: Additional experimental materials, methods, DNA sequences and supplementary figures and tables. See DOI: 10.1039/c7sc00292k Click here for addi , 2017, Chemical science.

[23]  Matthias Meier,et al.  Efficient in situ detection of mRNAs using the Chlorella virus DNA ligase for padlock probe ligation , 2017, RNA.

[24]  Jeffrey R Moffitt,et al.  High-performance multiplexed fluorescence in situ hybridization in culture and tissue with matrix imprinting and clearing , 2016, Proceedings of the National Academy of Sciences.

[25]  L. Cai,et al.  In Situ Transcription Profiling of Single Cells Reveals Spatial Organization of Cells in the Mouse Hippocampus , 2016, Neuron.

[26]  Hazen P Babcock,et al.  High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization , 2016, Proceedings of the National Academy of Sciences.

[27]  Viviana Gradinaru,et al.  Single-molecule RNA detection at depth by hybridization chain reaction and tissue hydrogel embedding and clearing , 2016, Development.

[28]  Kun Zhang,et al.  Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues , 2015, Nature Protocols.

[29]  Niles A. Pierce,et al.  Next-Generation in Situ Hybridization Chain Reaction: Higher Gain, Lower Cost, Greater Durability , 2014, ACS nano.

[30]  Timur Zhiyentayev,et al.  Single-cell in situ RNA profiling by sequential hybridization , 2014, Nature Methods.

[31]  K. Czaplinski,et al.  RNA detection in situ with FISH-STICs , 2014, RNA.

[32]  Robert Tjian,et al.  Single-molecule tracking of the transcription cycle by sub-second RNA detection , 2014, eLife.

[33]  Raymond K. Auerbach,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[34]  Viola Vogel,et al.  Binding-activated localization microscopy of DNA structures. , 2011, Nano letters.

[35]  E. Gouaux,et al.  Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density. , 2010, Biophysical journal.

[36]  Ning Ma,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[37]  A. Janulaitis,et al.  Novel application of Phi29 DNA polymerase: RNA detection and analysis in vitro and in situ by target RNA-primed RCA. , 2009, RNA.

[38]  Scott A. Rifkin,et al.  Imaging individual mRNA molecules using multiple singly labeled probes , 2008, Nature Methods.

[39]  R. Hochstrasser,et al.  Wide-field subdiffraction imaging by accumulated binding of diffusing probes , 2006, Proceedings of the National Academy of Sciences.

[40]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[41]  Lauren K. Wolf,et al.  Secondary structure effects on DNA hybridization kinetics: a solution versus surface comparison , 2006, Nucleic acids research.

[42]  Michael Zuker,et al.  DINAMelt web server for nucleic acid melting prediction , 2005, Nucleic Acids Res..

[43]  Robert M. Dirks,et al.  Triggered amplification by hybridization chain reaction. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Niles A. Pierce,et al.  An algorithm for computing nucleic acid base‐pairing probabilities including pseudoknots , 2004, J. Comput. Chem..

[45]  S. Hell Toward fluorescence nanoscopy , 2003, Nature Biotechnology.

[46]  Niles A. Pierce,et al.  A partition function algorithm for nucleic acid secondary structure including pseudoknots , 2003, J. Comput. Chem..

[47]  F S Fay,et al.  Visualization of single RNA transcripts in situ. , 1998, Science.

[48]  N. Sugimoto,et al.  Improved thermodynamic parameters and helix initiation factor to predict stability of DNA duplexes. , 1996, Nucleic acids research.

[49]  D C Ward,et al.  Actin gene expression visualized in chicken muscle tissue culture by using in situ hybridization with a biotinated nucleotide analog. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[51]  J. Flanagan,et al.  RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. , 2012, The Journal of molecular diagnostics : JMD.

[52]  Erik Winfree,et al.  Thermodynamic Analysis of Interacting Nucleic Acid Strands , 2007, SIAM Rev..