Mathematical analysis of a three-dimensional eutrophication model

Abstract In this paper we present and analyze a nutrient–phytoplankton–zooplankton–organic detritus-dissolved oxygen mathematical model simulating eutrophication processes into aquatic media. As a main result, we obtain existence and uniqueness results for the solution of the system, under realistic hypotheses of non-smooth coefficients (in particular, a non-regular water velocity). This lack or regularity prevent us from using the standard semigroup approach, forcing us towards the utilization of more refined techniques.

[1]  W. Wendland,et al.  Entropy boundary and jump conditions in the theory of sedimentation with compression , 1998 .

[2]  A. J. Mehta,et al.  An Investigation Of The Depositional Properties Of Flocculated Fine Sediments , 1975 .

[3]  Otared Kavian,et al.  Introduction à la théorie des points critiques : et applications aux problèmes elliptiques , 1993 .

[4]  B. Cescon,et al.  A three-dimensional numerical model for eutrophication and pollutant transport , 2001 .

[5]  Giovanni P. Galdi,et al.  An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems , 2011 .

[6]  S. Nixon Coastal marine eutrophication: A definition, social causes, and future concerns , 1995 .

[7]  James Baglama,et al.  A nutrient-prey-predator model with intratrophic predation , 2002, Appl. Math. Comput..

[8]  George Papanicolaou,et al.  Reaction-diffusion fronts in periodically layered media , 1991 .

[9]  Raymond P. Canale,et al.  Modeling biochemical processes in aquatic ecosystems , 1976 .

[10]  Cosimo Solidoro,et al.  Modelling macroalgae (Ulva rigida) in the Venice lagoon: Model structure identification and first parameters estimation , 1997 .

[11]  Xubo Wang,et al.  Existence-uniqueness and monotone approximation for a phytoplankton-zooplankton aggregation model , 2006 .

[12]  L. Boccardo,et al.  Existence results for some quasilinear parabolic equations , 1989 .

[13]  T. Roubíček Nonlinear partial differential equations with applications , 2005 .

[14]  James Baglama,et al.  Nutrient-phytoplankton-zooplankton models with a toxin , 2006, Math. Comput. Model..

[15]  J. Adams,et al.  Eutrophication , 2019, Encyclopedia of Ecology.

[16]  J. Cloern Our evolving conceptual model of the coastal eutrophication problem , 2001 .

[17]  Francesco Gallerano,et al.  Management strategies for the control of eutrophication processes in Fogliano lagoon (Italy): a long-term analysis using a mathematical model , 2001 .

[18]  A. Vicino,et al.  Periodic solutions in modelling lagoon ecological interactions , 2005, Journal of mathematical biology.

[19]  J. Antón,et al.  ROBUST: The ROle of BUffering capacities in STabilising coastal lagoon ecosystems , 2001 .

[20]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[21]  Raimund Bürger,et al.  Existence and Stability for Mathematical Models of Sedimentation–Consolidation Processes in Several Space Dimensions☆ , 2001 .

[22]  Three‐dimensional eutrophication model for Lake Biwa and its application to the framework design of transferable discharge permits , 2003 .

[23]  D. Blanchard,et al.  Renormalised solutions of nonlinear parabolic problems with L1 data: existence and uniqueness , 1997, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[24]  Karl K. Turekian,et al.  Encyclopedia of Ocean Sciences , 2001 .

[25]  Hristo V. Kojouharov,et al.  Analysis and numerical simulation of phytoplankton-nutrient systems with nutrient loss , 2005, Math. Comput. Simul..

[26]  Andrea Garulli,et al.  Integrating Identification and Qualitative Analysis for the Dynamic Model of a Lagoon , 2003, Int. J. Bifurc. Chaos.

[27]  Oxygen dynamics in coastal and lagoon ecosystems , 2000 .

[28]  Risgaard-Petersen Nils Coupled nitrification‐denitrification in autotrophic and heterotrophic estuarine sediments: On the influence of benthic microalgae , 2003 .

[29]  Sung-Mo Ahn,et al.  Three-dimensional hydrodynamic-eutrophication model (HEM-3D): application to Kwang-Yang Bay, Korea. , 2005, Marine environmental research.

[30]  P. Viaroli,et al.  Nutrient and iron limitation to Ulva blooms in a eutrophic coastal lagoon (Sacca di Goro, Italy) , 2005, Hydrobiologia.

[31]  Jacques Simon UNA GENERALIZACIÓN DEL TEOREMA DE LIONS-TARTAR , 2008 .

[32]  Ovide Arino,et al.  A mathematical model of the dynamics of the phytoplankton-nutrient system , 2000 .

[33]  G. Carney Marine pollution , 1977 .