Mathematical analysis of a three-dimensional eutrophication model
暂无分享,去创建一个
Lino J. Alvarez-Vázquez | Francisco J. Fernández | Rafael Muñoz-Sola | R. Muñoz-Sola | F. J. Fernández | L. Alvarez-Vázquez
[1] W. Wendland,et al. Entropy boundary and jump conditions in the theory of sedimentation with compression , 1998 .
[2] A. J. Mehta,et al. An Investigation Of The Depositional Properties Of Flocculated Fine Sediments , 1975 .
[3] Otared Kavian,et al. Introduction à la théorie des points critiques : et applications aux problèmes elliptiques , 1993 .
[4] B. Cescon,et al. A three-dimensional numerical model for eutrophication and pollutant transport , 2001 .
[5] Giovanni P. Galdi,et al. An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems , 2011 .
[6] S. Nixon. Coastal marine eutrophication: A definition, social causes, and future concerns , 1995 .
[7] James Baglama,et al. A nutrient-prey-predator model with intratrophic predation , 2002, Appl. Math. Comput..
[8] George Papanicolaou,et al. Reaction-diffusion fronts in periodically layered media , 1991 .
[9] Raymond P. Canale,et al. Modeling biochemical processes in aquatic ecosystems , 1976 .
[10] Cosimo Solidoro,et al. Modelling macroalgae (Ulva rigida) in the Venice lagoon: Model structure identification and first parameters estimation , 1997 .
[11] Xubo Wang,et al. Existence-uniqueness and monotone approximation for a phytoplankton-zooplankton aggregation model , 2006 .
[12] L. Boccardo,et al. Existence results for some quasilinear parabolic equations , 1989 .
[13] T. Roubíček. Nonlinear partial differential equations with applications , 2005 .
[14] James Baglama,et al. Nutrient-phytoplankton-zooplankton models with a toxin , 2006, Math. Comput. Model..
[15] J. Adams,et al. Eutrophication , 2019, Encyclopedia of Ecology.
[16] J. Cloern. Our evolving conceptual model of the coastal eutrophication problem , 2001 .
[17] Francesco Gallerano,et al. Management strategies for the control of eutrophication processes in Fogliano lagoon (Italy): a long-term analysis using a mathematical model , 2001 .
[18] A. Vicino,et al. Periodic solutions in modelling lagoon ecological interactions , 2005, Journal of mathematical biology.
[19] J. Antón,et al. ROBUST: The ROle of BUffering capacities in STabilising coastal lagoon ecosystems , 2001 .
[20] O. Ladyženskaja. Linear and Quasilinear Equations of Parabolic Type , 1968 .
[21] Raimund Bürger,et al. Existence and Stability for Mathematical Models of Sedimentation–Consolidation Processes in Several Space Dimensions☆ , 2001 .
[23] D. Blanchard,et al. Renormalised solutions of nonlinear parabolic problems with L1 data: existence and uniqueness , 1997, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[24] Karl K. Turekian,et al. Encyclopedia of Ocean Sciences , 2001 .
[25] Hristo V. Kojouharov,et al. Analysis and numerical simulation of phytoplankton-nutrient systems with nutrient loss , 2005, Math. Comput. Simul..
[26] Andrea Garulli,et al. Integrating Identification and Qualitative Analysis for the Dynamic Model of a Lagoon , 2003, Int. J. Bifurc. Chaos.
[27] Oxygen dynamics in coastal and lagoon ecosystems , 2000 .
[28] Risgaard-Petersen Nils. Coupled nitrification‐denitrification in autotrophic and heterotrophic estuarine sediments: On the influence of benthic microalgae , 2003 .
[29] Sung-Mo Ahn,et al. Three-dimensional hydrodynamic-eutrophication model (HEM-3D): application to Kwang-Yang Bay, Korea. , 2005, Marine environmental research.
[30] P. Viaroli,et al. Nutrient and iron limitation to Ulva blooms in a eutrophic coastal lagoon (Sacca di Goro, Italy) , 2005, Hydrobiologia.
[31] Jacques Simon. UNA GENERALIZACIÓN DEL TEOREMA DE LIONS-TARTAR , 2008 .
[32] Ovide Arino,et al. A mathematical model of the dynamics of the phytoplankton-nutrient system , 2000 .
[33] G. Carney. Marine pollution , 1977 .