Role of metal chlorides in the gelation and properties of fucoidan/κ-carrageenan hydrogels.

[1]  Jianan Yan,et al.  Storage stability of scallop (Patinopecten yessoensis) male gonad hydrolysates/κ-carrageenan composite hydrogels embeded curcumin , 2022, Food Hydrocolloids.

[2]  Chengrong Wen,et al.  Preparation of Low-Molecular-Weight Fucoidan with Anticoagulant Activity by Photocatalytic Degradation Method , 2022, Foods.

[3]  Chunqing Ai,et al.  Fucoidan hydrogels induced by κ-carrageenan: Rheological, thermal and structural characterization. , 2021, International journal of biological macromolecules.

[4]  Jie Tian,et al.  Calcium-induced-gel properties for ι-carrageenan in the presence of different charged amino acids , 2021, LWT.

[5]  A. Bastrzyk,et al.  Stabilizing properties of fucoidan for the alumina suspension containing the cationic surfactant. , 2020, Carbohydrate polymers.

[6]  Chao He,et al.  Anticoagulant chitosan-kappa-carrageenan composite hydrogel sorbent for simultaneous endotoxin and bacteria cleansing in septic blood. , 2020, Carbohydrate polymers.

[7]  Yan-tao Han,et al.  Bio-multifunctional alginate/chitosan/fucoidan sponges with enhanced angiogenesis and hair follicle regeneration for promoting full-thickness wound healing , 2020 .

[8]  Jianhua Xie,et al.  Role of salt ions and molecular weights on the formation of Mesona chinensis polysaccharide-chitosan polyelectrolyte complex hydrogel. , 2020, Food chemistry.

[9]  X. Bai,et al.  Rheological and physicochemical properties of polysaccharides extracted from stems of Dendrobium officinale , 2020 .

[10]  Yapeng Fang,et al.  The future trends of food hydrocolloids , 2020 .

[11]  Kazunori Kadota,et al.  Controlled release behavior of curcumin from kappa-carrageenan gels with flexible texture by the addition of metal chlorides , 2020 .

[12]  K. Popat,et al.  Carboxymethyl-kappa-carrageenan: A study of biocompatibility, antioxidant and antibacterial activities. , 2020, International journal of biological macromolecules.

[13]  Jianhua Xie,et al.  Recent advance in delivery system and tissue engineering applications of chondroitin sulfate. , 2020, Carbohydrate polymers.

[14]  M. Rezaei,et al.  The activation of NF-κB and MAPKs signaling pathways of RAW264.7 murine macrophages and natural killer cells by fucoidan from Nizamuddinia zanardinii. , 2020, International journal of biological macromolecules.

[15]  Á. González-Fernández,et al.  Fucoidans: The importance of processing on their anti-tumoral properties , 2020, Algal Research.

[16]  B. Zhu,et al.  The effects of amino acids on the gel properties of potassium iota carrageenan , 2019, Food Hydrocolloids.

[17]  B. Zhu,et al.  Effect of ε-polylysine addition on κ-carrageenan gel properties: Rheology, water mobility, thermal stability and microstructure , 2019, Food Hydrocolloids.

[18]  Haitao Wang,et al.  Gelation and microstructural properties of protein hydrolysates from trypsin-treated male gonad of scallop (Patinopecten yessoensis) modified by κ-Carrageenan/K+ , 2019, Food Hydrocolloids.

[19]  B. Zhu,et al.  Gel properties of protein hydrolysates from trypsin-treated male gonad of scallop (Patinopecten yessoensis) , 2019, Food Hydrocolloids.

[20]  Yue Zhang,et al.  Effect of egg white solids on the rheological properties and bread making performance of gluten-free batter , 2019, Food Hydrocolloids.

[21]  A. Romano,et al.  Fucoidan Structure and Activity in Relation to Anti-Cancer Mechanisms , 2019, Marine drugs.

[22]  E. Morris,et al.  Effect of monovalent cations on calcium-induced assemblies of kappa carrageenan , 2019, Food Hydrocolloids.

[23]  Wenjing Ma,et al.  Characterization of Xanthan gum-based hydrogel with Fe3+ ions coordination and its reversible sol-gel conversion. , 2019, Carbohydrate polymers.

[24]  Yanli Wang,et al.  Influence of cations on texture, compressive elastic modulus, sol-gel transition and freeze-thaw properties of kappa-carrageenan gel. , 2018, Carbohydrate polymers.

[25]  Yapeng Fang,et al.  Specific binding of trivalent metal ions to λ-carrageenan. , 2018, International journal of biological macromolecules.

[26]  H. Domínguez,et al.  Potential of intensification techniques for the extraction and depolymerization of fucoidan , 2018 .

[27]  M. Rezaei,et al.  Improved immunomodulatory and antioxidant properties of unrefined fucoidans from Sargassum angustifolium by hydrolysis , 2017, Journal of Food Science and Technology.

[28]  A. Miyazawa,et al.  Microstructural observation of fuel cell catalyst inks by Cryo-SEM and Cryo-TEM. , 2017, Microscopy.

[29]  F. Chenlo,et al.  Thermal reversibility of kappa/iota-hybrid carrageenan gels extracted from Mastocarpus stellatus at different ionic strengths , 2017 .

[30]  Shiho Suzuki,et al.  Primary structure, conformation in aqueous solution, and intestinal immunomodulating activity of fucoidan from two brown seaweed species Sargassum crassifolium and Padina australis. , 2016, Carbohydrate polymers.

[31]  A. Lenart,et al.  Acid hydrolysis of kappa-carrageenan as a way of gaining new substances for freezing process modification and protection from excessive recrystallisation of ice , 2015 .

[32]  S. Turgeon,et al.  Textural and waterbinding behaviors of β-lactoglobulin-xanthan gum electrostatic hydrogels in relation to their microstructure , 2015 .

[33]  Man Xiao,et al.  Preparation and characterization of konjac glucomannan and ethyl cellulose blend films , 2015 .

[34]  K. Nishinari,et al.  Rheology and structure of mixed kappa-carrageenan/iota-carrageenan gels , 2014 .

[35]  T. Solov’eva,et al.  Polysaccharide structure of tetrasporic red seaweed Tichocarpus crinitus. , 2013, Carbohydrate polymers.

[36]  E. Foegeding,et al.  Stability and mechanism of whey protein soluble aggregates thermally treated with salts , 2012 .

[37]  S. Young,et al.  Effect of cations on the microstructure and in‐vitro drug release of κ‐ and ι‐carrageenan liquid and semi‐solid aqueous dispersions , 2011, The Journal of pharmacy and pharmacology.

[38]  M. Šen,et al.  Determination of critical gelation conditions of κ-carrageenan by viscosimetric and FT-IR analyses , 2010 .

[39]  B. Lanza,et al.  Osmotic and aging effects in caviar oocytes throughout water and lipid changes assessed by 1H NMR T1 and T2 relaxation and MRI. , 2007, Magnetic resonance imaging.

[40]  V. Martorana,et al.  K+ and Na+ effects on the gelation properties of k-carrageenan , 2005 .

[41]  J. Irudayaraj,et al.  Rheological study of starch and dairy ingredient-based food systems , 2004 .

[42]  Rengaswami Chandrasekaran,et al.  Acetan:glucomannan interactions--a molecular modeling study. , 2003, Carbohydrate research.

[43]  V. Martorana,et al.  Thermoreversible gelation of kappa-carrageenan: relation between conformational transition and aggregation. , 2003, Biophysical chemistry.

[44]  M. Satoh,et al.  An IR study on ion-specific and solvent-specific swelling of poly(N-vinyl-2-pyrrolidone) gel , 2002 .

[45]  G. Brownsey,et al.  Synergistic Interactions of Acetan with Carob or Konjac Mannan , 1998 .

[46]  E. Morris,et al.  Effect of locust bean gum and konjac glucomannan oh the conformation and rheology of agarose and κ‐carrageenan , 1995 .

[47]  M. Miles,et al.  Molecular origins of acetan solution properties. , 1989, International journal of biological macromolecules.

[48]  M. Miles,et al.  X-Ray fibre diffraction studies on konjac mannan-kappa carrageenan mixed gels , 1988 .

[49]  M. Miles,et al.  CAROB GUM KAPPA-CARRAGEENAN MIXED GELS-MECHANICAL-POPERTIES AND X-RAY FIBER DIFFRACTION STUDIES , 1984 .