Copolymers based on thiazolothiazole-dithienosilole as hole-transporting materials for high efficient perovskite solar cells

[1]  Konrad Wojciechowski,et al.  C60 as an Efficient n-Type Compact Layer in Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[2]  Mohammad Khaja Nazeeruddin,et al.  Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. , 2015, Nature chemistry.

[3]  William J. Potscavage,et al.  Degradation Mechanisms of Solution‐Processed Planar Perovskite Solar Cells: Thermally Stimulated Current Measurement for Analysis of Carrier Traps , 2016, Advanced materials.

[4]  Yongfang Li,et al.  Room-temperature mixed-solvent-vapor annealing for high performance perovskite solar cells , 2016 .

[5]  Yongfang Li,et al.  High performance planar p-i-n perovskite solar cells with crown-ether functionalized fullerene and LiF as double cathode buffer layers , 2015 .

[6]  Chang-Lyoul Lee,et al.  Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer , 2015 .

[7]  He Yan,et al.  Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. , 2014, Journal of the American Chemical Society.

[8]  Bert Conings,et al.  Perovskite‐Based Hybrid Solar Cells Exceeding 10% Efficiency with High Reproducibility Using a Thin Film Sandwich Approach , 2014, Advanced materials.

[9]  Alex K.-Y. Jen,et al.  High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers. , 2013, Nano letters.

[10]  Yongfang Li,et al.  Advancements in all-solid-state hybrid solar cells based on organometal halide perovskites , 2015 .

[11]  Yun‐Hi Kim,et al.  A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskite , 2014 .

[12]  Chiara Bertarelli,et al.  17.6% stabilized efficiency in low-temperature processed planar perovskite solar cells , 2015 .

[13]  Jieshan Qiu,et al.  High performance hybrid solar cells sensitized by organolead halide perovskites , 2013 .

[14]  Nam-Gyu Park,et al.  Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell , 2013 .

[15]  Michael Grätzel,et al.  Electron and Hole Transport through Mesoporous TiO2 Infiltrated with Spiro‐MeOTAD , 2007 .

[16]  G. Cui,et al.  Interface engineering for high-performance perovskite hybrid solar cells , 2015 .

[17]  D. Ginger,et al.  Impact of microstructure on local carrier lifetime in perovskite solar cells , 2015, Science.

[18]  Cherie R. Kagan,et al.  Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors , 1999, Science.

[19]  A. Heeger,et al.  Efficient Perovskite Hybrid Photovoltaics via Alcohol‐Vapor Annealing Treatment , 2016 .

[20]  Anders Hagfeldt,et al.  Effect of Different Hole Transport Materials on Recombination in CH3NH3PbI3 Perovskite-Sensitized Mesoscopic Solar Cells. , 2013, The journal of physical chemistry letters.

[21]  Yossi Rosenwaks,et al.  Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor). , 2014, Nano letters.

[22]  Yongfang Li,et al.  Crown-ether functionalized fullerene as a solution-processable cathode buffer layer for high performance perovskite and polymer solar cells , 2015 .

[23]  B. Liu,et al.  High-Performance Solid-State Organic Dye Sensitized Solar Cells with P3HT as Hole Transporter , 2011 .

[24]  Xudong Yang,et al.  A dopant-free hole-transporting material for efficient and stable perovskite solar cells , 2014 .

[25]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[26]  Stephen Z. D. Cheng,et al.  High performance planar heterojunction perovskite solar cells with fullerene derivatives as the electron transport layer. , 2015, ACS applied materials & interfaces.

[27]  Yongfang Li,et al.  Synthesis and Characterization of a Copolymer Based on Thiazolothiazole and Dithienosilole for Polymer Solar Cells , 2011 .

[28]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[29]  Peng Gao,et al.  Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.

[30]  Yongfang Li,et al.  Alkyl chain engineering on a dithieno[3,2-b:2',3'-d]silole-alt-dithienylthiazolo[5,4-d]thiazole copolymer toward high performance bulk heterojunction solar cells. , 2011, Chemical communications.

[31]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[32]  H. Lee,et al.  Polyfluorene Derivatives are High‐Performance Organic Hole‐Transporting Materials for Inorganic−Organic Hybrid Perovskite Solar Cells , 2014 .

[33]  Henk J. Bolink,et al.  Perovskite solar cells employing organic charge-transport layers , 2013, Nature Photonics.

[34]  S. Zakeeruddin,et al.  Low band gap S,N-heteroacene-based oligothiophenes as hole-transporting and light absorbing materials for efficient perovskite-based solar cells , 2014 .

[35]  Jinli Yang,et al.  Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. , 2015, ACS nano.

[36]  Anders Hagfeldt,et al.  Comparing spiro-OMeTAD and P3HT hole conductors in efficient solid state dye-sensitized solar cells. , 2012, Physical chemistry chemical physics : PCCP.

[37]  Michael Grätzel,et al.  Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. , 2011, Journal of the American Chemical Society.

[38]  Yongfang Li,et al.  Effect of PEI cathode interlayer on work function and interface resistance of ITO electrode in the inverted polymer solar cells , 2015 .

[39]  Yongfang Li,et al.  Triple cathode buffer layers composed of PCBM, C60, and LiF for high-performance planar perovskite solar cells. , 2015, ACS applied materials & interfaces.

[40]  Garry Rumbles,et al.  Heterojunction modification for highly efficient organic-inorganic perovskite solar cells. , 2014, ACS nano.

[41]  Jinsong Huang,et al.  Distinct exciton dissociation behavior of organolead trihalide perovskite and excitonic semiconductors studied in the same system. , 2015, Small.

[42]  Bo Qu,et al.  Improved light absorption and charge transport for perovskite solar cells with rough interfaces by sequential deposition. , 2014, Nanoscale.

[43]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[44]  H. Egelhaaf,et al.  Understanding S-Shaped Current-Voltage Characteristics in Organic Solar Cells Containing a TiOx Inter layer with Impedance Spectroscopy and Equivalent Circuit Analysis , 2012 .

[45]  S. Zakeeruddin,et al.  A–D–A-type S,N-heteropentacene-based hole transport materials for dopant-free perovskite solar cells , 2015 .

[46]  Dongmei Li,et al.  Interfaces in perovskite solar cells. , 2015, Small.

[47]  Nam-Gyu Park,et al.  Organolead Halide Perovskite: New Horizons in Solar Cell Research , 2014 .

[48]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[49]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[50]  Laura M Herz,et al.  High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites , 2013, Advanced materials.

[51]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[52]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[53]  Fan Zuo,et al.  Additive Enhanced Crystallization of Solution‐Processed Perovskite for Highly Efficient Planar‐Heterojunction Solar Cells , 2014, Advanced materials.

[54]  Malik Abdul Rub,et al.  A dual-functional asymmetric squaraine-based low band gap hole transporting material for efficient perovskite solar cells. , 2016, Nanoscale.

[55]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[56]  E. Sargent,et al.  Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals , 2015, Science.

[57]  Martin A. Green,et al.  Methylammonium Lead Bromide Perovskite-Based Solar Cells by Vapor-Assisted Deposition , 2015 .

[58]  Taiho Park,et al.  Charge Density Dependent Mobility of Organic Hole‐Transporters and Mesoporous TiO2 Determined by Transient Mobility Spectroscopy: Implications to Dye‐Sensitized and Organic Solar Cells , 2013, Advanced materials.

[59]  David Cahen,et al.  Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3−xClx perovskite solar cells , 2014, Nature Communications.

[60]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[61]  Juan Bisquert,et al.  Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. , 2013, Nano letters.

[62]  Nripan Mathews,et al.  The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells , 2014 .

[63]  M. Grätzel,et al.  Perovskite solar cells with 12.8% efficiency by using conjugated quinolizino acridine based hole transporting material. , 2014, Journal of the American Chemical Society.