Lyndon-like and V-order factorizations of strings
暂无分享,去创建一个
[1] Maxime Crochemore,et al. Optimal Canonization of All Substrings of a String , 1991, Inf. Comput..
[2] Maxime Crochemore,et al. Fast parallel Lyndon factorization with applications , 1995, Mathematical systems theory.
[3] David E. Daykin,et al. Ordered Ranked Posets, Representations of Integers and Inequalities from Extremal Poset Problems , 1985 .
[4] M. Lothaire,et al. Combinatorics on words: Frontmatter , 1997 .
[5] Uwe Leck. Nonexistence of a Kruskal-Katona Type Theorem for Subword Orders , 2004, Comb..
[6] Costas S. Iliopoulos,et al. Parallel RAM Algorithms for Factorizing Words , 1994, Theor. Comput. Sci..
[7] R. Lyndon,et al. Free Differential Calculus, IV. The Quotient Groups of the Lower Central Series , 1958 .
[8] Jean Pierre Duval,et al. Factorizing Words over an Ordered Alphabet , 1983, J. Algorithms.
[9] R. C. Lyndon. On Burnside’s problem. II , 1955 .
[10] William F. Smyth,et al. Computing Patterns in Strings , 2003 .
[11] L. Cummings,et al. Shuffled Lyndon Words , 1992 .
[12] David E. Daykin. On deleting coordinates from integer vectors , 2001, Discret. Math..
[13] W. F. Smyth,et al. Optimal Algorithms for Computing the canonical form of a circular string , 1992, Theor. Comput. Sci..
[14] D. E. Daykin,et al. Ordering Integer Vectors for Coordinate Deletions , 1997 .