Aqua dissociation nature of cesium hydroxide.

To understand the mechanism of aqueous base dissociation chemistry, the ionic dissociation of cesium-hydroxide in water clusters is examined using density functional theory and ab initio calculations. In this study, we report hydrated structures, stabilities, thermodynamic quantities, dissociation energies, infrared spectra, and electronic properties of CsOH(H(2)O)(n=0-4). With the addition of water molecules, the Cs-OH bond lengthened significantly from 2.46 A for n=1 to 3.08 A for n=4, which causes redshift in Cs-O stretching frequency. It is found that three water molecules are needed for the dissociation of Cs-OH, in contrast to the case of strong acid dissociation which requires at least four water molecules. However, the dissociation for n=3 could be considered as incomplete because a very weak CS em leader OH stretch mode is still present, while that for n=4 is complete since the Cs em leader OH mode no longer exists. This study can be related with hydration chemistry of cations and anions, and extended into the intra- and intercharge-transfer phenomena.

[1]  Kwang S. Kim,et al.  Water heptamer with an excess electron: Ab initio study , 2003 .

[2]  C. Bauschlicher,et al.  Ab initio study of the alkali and alkaline‐earth monohydroxides , 1986 .

[3]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[4]  D. Lide,et al.  Structure of the Alkali Hydroxides. II. The Infrared Spectra of Matrix‐Isolated CsOH and CsOD , 1968 .

[5]  Jongseob Kim,et al.  Water dimer to pentamer with an excess electron: Ab initio study , 1999 .

[6]  Enrique M. Cabaleiro-Lago,et al.  Computational study of the dissociation of H–X acids (X=F, Cl, Br, I) in water clusters , 2002 .

[7]  Byung Jin Mhin,et al.  Ab initio studies of the water dimer using large basis sets: The structure and thermodynamic energies , 1992 .

[8]  Maria-Aglaia D. Stiakaki,et al.  Molecular geometries and energetics of metal-containing systems using an improved ASED-MO model: a systematic test to group 1 and 2 metal containing systems in the gas phase , 1994 .

[9]  J. Lisy,et al.  Vibrational predissociation spectroscopy of Cs+(H2O)1−5 , 1996 .

[10]  Kwang S. Kim,et al.  Ab initio study of superoxide anion—water clusters O2 − (H2O)n=1-5 , 2002 .

[11]  D. Lide,et al.  Structure of the Alkali Hydroxides. IV. Interpretation of Vibration–Rotation Interactions in CsOH and RbOH and Refinement of Structures , 1969 .

[12]  Jongseob Kim,et al.  Structures, binding energies, and spectra of isoenergetic water hexamer clusters: Extensive ab initio studies , 1998 .

[13]  Kwang S. Kim,et al.  STRUCTURES, ENERGETICS, AND SPECTRA OF AQUA-SODIUM(I) : THERMODYNAMIC EFFECTS AND NONADDITIVE INTERACTIONS , 1995 .

[14]  R. L. Kuczkowski,et al.  Microwave Spectra of Alkali Hydroxides : Evidence for Linearity of CsOH and KOH , 1966 .

[15]  E. Horwitz,et al.  A NOVEL STRONTIUM-SELECTIVE EXTRACTION CHROMATOGRAPHIC RESIN* , 1992 .

[16]  E. Clementi,et al.  Revisiting small clusters of water molecules , 1986 .

[17]  E. Glendening,et al.  An extended basis set ab initio study of alkali metal cation–water clusters , 1967 .

[18]  Jongseob Kim,et al.  Structures, energetics, and spectra of fluoride–water clusters F−(H2O)n, n=1–6: Ab initio study , 1999 .

[19]  José L. Segura,et al.  Neue Konzepte in der Tetrathiafulvalenchemie , 2001 .

[20]  I. Tumanova,et al.  Electron-diffraction study on saturated rubidium hydroxide vapor , 1990 .

[21]  B. Moyer,et al.  Applicability of a Calixarene-Crown Compound for the Removal of Cesium from Alkaline Tank Waste , 1997 .

[22]  Han Myoung Lee,et al.  Comparative ab initio study of the structures, energetics and spectra of X−⋅(H2O)n=1–4 [X=F, Cl, Br, I] clusters , 2000 .

[23]  Charles W. Bock,et al.  Calcium Ion Coordination: A Comparison with That of Beryllium, Magnesium, and Zinc , 1996 .

[24]  W. C. Ermler,et al.  Abinitio relativistic effective potentials with spinorbit operators. III. Rb through Xe , 1987 .

[25]  K. W. Jung,et al.  Cesium Hydroxide Promoted Chemoselective N-Alkylation for the Generally Efficient Synthesis of Secondary Amines , 1999 .

[26]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[27]  Youhei Suzuki,et al.  Structures and stability of hydrated clusters of hydrogen chloride, HCl(H2O)n, n=1–5 , 1998 .

[28]  John F. Ahearne,et al.  Radioactive Waste: The Size of the Problem , 1997 .

[29]  Han Myoung Lee,et al.  Aqua–potassium(I) complexes: Ab initio study , 1999 .

[30]  Kwang S. Kim,et al.  Structures, energetics, and spectra of electron–water clusters, e−–(H2O)2–6 and e−–HOD(D2O)1–5 , 2003 .

[31]  M. Suhm,et al.  Acidic protons before take-off: A comparative jet Fourier transform infrared study of small HCl- and HBr-solvent complexes , 2003 .

[32]  Han Myoung Lee,et al.  Structures, energies, vibrational spectra, and electronic properties of water monomer to decamer , 2000 .

[33]  Kwang Soo Kim,et al.  Molecular Clusters of pi-Systems: Theoretical Studies of Structures, Spectra, and Origin of Interaction Energies. , 2000, Chemical reviews.

[34]  Kwang S. Kim,et al.  Structure, electronic properties, and vibrational spectra of the water octamer with an extra electron: Ab initio study , 2002 .

[35]  T. Vaden,et al.  Rotational structure in the asymmetric OH stretch of Cs+(H2O)Ar , 2002 .

[36]  A. Becke A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .

[37]  J. Tainer,et al.  Metal-binding sites in proteins. , 1991, Current opinion in biotechnology.

[38]  C. Johnson,et al.  Thermodynamic review and calculations—alkali-metal oxide systems with nuclear fuels, fission products, and structural materials , 1981 .

[39]  D. Williams,et al.  The Biological Chemistry of the Elements , 1991 .

[40]  R. L. Kuczkowski,et al.  Structure of the Alkali Hydroxides. I. Microwave Spectrum of Gaseous CsOH , 1967 .

[41]  P. Knochel,et al.  Cesium Hydroxide: A Superior Base for the Catalytic Alkynylation of Aldehydes and Ketones and Catalytic Alkenylation of Nitriles. , 1999, Angewandte Chemie.

[42]  P. Knochel,et al.  Cesium hydroxide catalyzed addition of alcohols and amine derivatives to alkynes and styrene , 1999 .

[43]  E. Corey,et al.  New, practical and effective sources of fluoride ion for desilylation to form carbon anions , 1999 .

[44]  D. R. Jenkins,et al.  Bond dissociation energies of gaseous alkali metal hydroxides , 1969 .

[45]  D. Jensen,et al.  Dissociation energies of the alkali metal hydroxides , 1966 .

[46]  Han Myoung Lee,et al.  Structures, spectra, and electronic properties of halide-water pentamers and hexamers, X−(H2O)5,6 (X=F,Cl,Br,I): Ab initio study , 2002 .

[47]  R. Brown,et al.  Structures and flexibilities of the alkali hydroxides , 1994 .

[48]  K. W. Jung,et al.  CESIUM PROMOTED O-ALKYLATION OF ALCOHOLS FOR THE EFFICIENT ETHER SYNTHESIS , 1999 .

[49]  D. Jensen Molecular structures and enthalpies of formation of gaseous alkali metal hydroxides , 1970 .

[50]  Han Myoung Lee,et al.  Structures and spectra of iodide-water clusters I-(H2O)(n=1-6): An ab initio study , 2001 .

[51]  E. Corey,et al.  Highly enantioselective synthesis of cyclic and functionalized α-amino acids by means of a chiral phase transfer catalyst , 1998 .