Frequency dividers in radar target stimulator applications

More and more driver assistance systems are integrated into modern vehicles. This development results in a continuous rise in the complexity of these vehicles, as the functions have to comply to the corresponding safety standards. Testing and validating these functions on an automotive test bench instead of driving tests at closed proving grounds requires comprehensive stimulation of the involved sensors. In this article we are focusing on an approach for stimulating short-range radar sensors of a vehicle located on such a test bench. Coping with the requirements imposed by these types of sensors we investigate the usage of frequency multipliers and dividers in the frequency translation section of the radar stimulator. For this purpose, we provide an overview on different concepts for these multipliers and dividers. After reviewing the advantages and disadvantages of these devices, we provide measurement results of a stimulator setup applying this type of frequency translation.ZusammenfassungFahrassistenzsysteme spielen eine immer größere Rolle in modernen Fahrzeugen. Die Integration dieser Systeme und die damit verbundene Einhaltung der nötigen Vorschriften und Sicherheitsstandards erhöhen die Komplexität der Fahrzeuge enorm. Um die Funktionsprüfung von Fahrassistenzsystemen auf dem Prüfstand durchführen zu können, ist eine umfassende Stimulation der Sensoren des Systems notwendig.Dieser Beitrag behandelt einen Zugang zur Stimulation automotiver Radarsensoren für den Nahbereich auf einem Prüfstand. Dabei wurde die Verwendung von Frequenzmultiplikatoren und Dividierern im Frequenzumsetzungspfad des Radar-Stimulators untersucht. Der Artikel gibt einen Überblick über verschiedene Konzepte zur Realisierung dieser Funktionsblöcke. In der Folge werden die Vor- und Nachteile der in Verbindung mit einem Radar-Target-Stimulator verwendeten Konzepte aufgezeigt und Messergebnisse präsentiert.

[1]  Choongyeun Cho,et al.  A Low-Power mmWave CML Prescaler in 65nm SOI CMOS Technology , 2008, 2008 IEEE Compound Semiconductor Integrated Circuits Symposium.

[2]  I. D. Robertson,et al.  Shifted-quadrant microwave vector modulator , 2003 .

[3]  S. Wagner,et al.  100–166 GHz wide band high speed digital dynamic frequency divider design in 0.13 μm SiGe BiCMOS technology , 2015, 2015 10th European Microwave Integrated Circuits Conference (EuMIC).

[4]  A. Weinberg The Effects of Transponder Imperfections on the Error Probability Performance of a Satellite Communication System , 1980, IEEE Trans. Commun..

[5]  R. H. Derksen,et al.  Stability ranges of regenerative frequency dividers employing double balanced mixers in large-signal operation , 1991 .

[6]  Martin Horn,et al.  Radar target stimulation for automotive applications , 2018, IET Radar, Sonar & Navigation.

[7]  K. S. Gurumurthy,et al.  An Insight into the Hardware and Software Complexity of ECUs in Vehicles , 2011 .

[8]  C. Schyr,et al.  DrivingCube – A novel concept for validation of powertrain and steering systems with automated driving , 2016 .

[9]  Linus Maurer,et al.  77 GHz SiGe based bipolar transceivers for automotive radar applications — An industrial perspective , 2011, 2011 IEEE 9th International New Circuits and systems conference.

[10]  Dietmar Kissinger,et al.  Millimeter-Wave Receiver Concepts for 77 GHz Automotive Radar in Silicon-Germanium Technology , 2012, Springer Briefs in Electrical and Computer Engineering.

[11]  T.H. Lee,et al.  Oscillator phase noise: a tutorial , 1999, IEEE Journal of Solid-State Circuits.

[12]  Erwin Biebl,et al.  A high bandwidth radar target simulator for automotive radar sensors , 2016, 2016 European Radar Conference (EuRAD).

[13]  Michael Gadringer,et al.  Highly scalable radar target simulator for autonomous driving test beds , 2017, 2017 European Radar Conference (EURAD).

[14]  Holger Blume,et al.  An experimental high performance radar system for highly automated driving , 2017, 2017 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM).

[15]  M. Abbas,et al.  77 GHz ACC radar simulation platform , 2009, 2009 9th International Conference on Intelligent Transport Systems Telecommunications, (ITST).

[16]  Robert G. Harrison Theory of regenerative frequency dividers using double-balanced mixers , 1989, IEEE MTT-S International Microwave Symposium Digest.

[17]  J. Wenger,et al.  Automotive radar - status and perspectives , 2005, IEEE Compound Semiconductor Integrated Circuit Symposium, 2005. CSIC '05..

[18]  Philip Koopman,et al.  Challenges in Autonomous Vehicle Testing and Validation , 2016 .

[19]  T. Lee,et al.  Superharmonic injection-locked frequency dividers , 1999, IEEE J. Solid State Circuits.

[20]  Todd S. Kaplan,et al.  IEEE Compound Semiconductor Integrated Circuit Symposium , 2006 .

[21]  Robert Weigel,et al.  Target simulator concept for chirp modulated 77 GHz automotive radar sensors , 2014, 2014 11th European Radar Conference.

[22]  Reinhold Haeb-Umbach,et al.  Hypothesis test for the detection of moving targets in automotive radar , 2017, 2017 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS).

[23]  R.L. Miller Fractional-Frequency Generators Utilizing Regenerative Modulation , 1939, Proceedings of the IRE.

[24]  Michael Paulweber,et al.  Virtual reality for automotive radars , 2018, Elektrotech. Informationstechnik.

[25]  Jesus Grajal,et al.  A 1.4-2.7-GHz analog MMIC vector modulator for a crossbar beamforming network , 1997 .

[26]  C. Helstrom Transient Analysis of Regenerative Frequency Dividers , 1965 .