State of the art of Laser Hardening and Cladding

In this paper an overview is given about laser surface modification processes, which are developed especially with the aim of hardness improvement for an enhanced fatigue and wear behaviour. The processes can be divided into such with and without filler material and in solid-state and melting processes. Actual work on shock hardening, transformation hardening, remelting, alloying and cladding is reviewed, where the main focus was on scientific work from the 21st century.

[1]  C. Gandin,et al.  Prediction of grain structures in various solidification processes , 1996 .

[2]  G. Askar’yan,et al.  Pressure on Evaporation of Matter in a Radiation Beam , 1963 .

[3]  Dieter Schuoecker,et al.  Theoretical analysis of laser cladding and alloying , 1997, Other Conferences.

[4]  W. Kaplan,et al.  Calculation of process parameters for laser alloying and cladding , 1998 .

[5]  P. Schaaf,et al.  Laser nitriding of iron and aluminum , 2002 .

[6]  N. Dahotre,et al.  Surface engineering of aluminum alloys for automotive engine applications , 2004 .

[7]  R. Brockman,et al.  Finite element simulation of laser shock peening , 1999 .

[8]  Fritz Klocke,et al.  Process monitoring in laser surface treatment operations with reflection and temperature measurement , 1997 .

[9]  M. Masen Abrasive tool wear in metal forming processes , 2004 .

[10]  Amir Khajepour,et al.  Fuzzy model and compact fuzzy model identification of laser cladding process , 2004 .

[11]  T. Mccay,et al.  Melt instabilities during laser surface alloying , 2002 .

[12]  Richard M. White,et al.  Elastic Wave Generation by Electron Bombardment or Electromagnetic Wave Absorption , 1963 .

[13]  Z. Nitkiewicz,et al.  Solidification microstructure of plasma sprayed and remelted carbide coatings (Cr3C2/ni-Al, W2C-WC/Co) , 2002 .

[14]  Mike Suk,et al.  Laser Smoothing of the Load/Unload Tabs of Magnetic Recording Head Gimbal Assemblies , 2002 .

[15]  Y. Yao,et al.  Micro scale laser shock processing of metallic components , 2002 .

[16]  R. Fabbro,et al.  Surface modifications induced in 316L steel by laser peening and shot-peening. Influence on pitting corrosion resistance , 2000 .

[17]  Shiuh-Jer Huang,et al.  Fuzzy Logic Control for the Ti6A14V Laser Alloying Process , 2001 .

[18]  W. Steen,et al.  Laser remelting of plasma sprayed coatings , 2000 .

[19]  Marcel Schneider,et al.  Laser cladding with powder , 1998 .

[20]  H. Man,et al.  Improvement in cavitation erosion resistance of a copper-based propeller alloy by laser surface melting , 2004 .

[21]  Roger Grundmann,et al.  Numerical investigations of Lorentz force influenced Marangoni convection relevant to aluminum surface alloying , 2001 .

[22]  J. Majumdar,et al.  Laser surface alloying of an Mg alloy with Al + Mn to improve corrosion resistance , 2002 .

[23]  Gerry Byrne,et al.  Laser cladding of aerospace materials , 2002 .

[24]  J. Dupont,et al.  Effects of melt-pool geometry on crystal growth and microstructure development in laser surface-melted superalloy single crystals: Mathematical modeling of single-crystal growth in a melt pool (part I) , 2004 .

[25]  J. Rońda,et al.  Consistent thermo-mechano-metallurgical model of welded steel with unified approach to derivation of phase evolution laws and transformation-induced plasticity , 2000 .

[26]  M. Seifert,et al.  High power diode laser beam scanning in multi-kilowatt range , 2004 .

[27]  Hubertus J.M. Geijselaers,et al.  Numerical simulation of stresses due to solid state transformations. , 2003 .

[28]  J. Ocaña,et al.  Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy , 2004 .

[29]  Yung-Chiun Her,et al.  Laser shock peening on fatigue behavior of 2024-T3 Al alloy with fastener holes and stopholes , 2001 .

[30]  A. Kar,et al.  Interfacial instability and microstructural growth due to rapid solidification in laser processing , 1998 .

[31]  Johan Meijer,et al.  Industrial imaging: controls laser surface treatment: Hihg-speed image capture and analysis create a more reliable laser process , 1997 .

[32]  F. Vollertsen,et al.  Process modelling of laser ablating ferrous materials , 1997 .

[33]  J. Majumdar,et al.  Laser surface engineering of a magnesium alloy with Al+Al2O3 , 2004 .

[34]  H. H. van Mal,et al.  Process monitoring and control , 1993 .

[35]  K Lindemann Temperaturgeregeltes Laserstrahl‐Nitrieren von Titan , 2004 .

[36]  N. Tsujii,et al.  Crack Repair of Hot Work Tool Steel by Laser Melt Processing , 2001 .

[37]  Ronald G.K.M. Aarts,et al.  Dynamic models of laser surface alloying , 1999 .

[38]  G. Śliwiński,et al.  Temperature distribution in laser-clad multi-layers , 2004 .

[39]  W M Steen,et al.  A dual-frequency electromagnetic sensor for non-contact dilution evaluation in laser cladding and alloying processes , 1996 .

[40]  Johan Meijer,et al.  Modelling of the temperature field induced by laser surface irradiation by laser surface irradiation in view of the feedback control theory , 1998 .

[41]  Zhao Guoqun,et al.  A new analytical model for laser bending , 2004 .

[42]  Inverse Calculation of Power Density for Laser Surface Treatment , 2000 .

[43]  Shiuh-Jer Huang,et al.  Ti6A14V laser alloying process control by using a self-organizing fuzzy controller , 2004 .

[44]  B. Yilbas,et al.  Laser-shock processing of steel , 2003 .

[45]  F. Lawrence,et al.  Laser shock‐induced mechanical and microstructural modification of welded maraging steel , 1990 .

[46]  Amir Khajepour,et al.  Three-dimensional finite element modeling of laser cladding by powder injection: Effects of powder feedrate and travel speed on the process , 2003 .

[47]  Henrik Runnemalm,et al.  Efficient finite element modelling and simulation of welding , 1999 .

[48]  Johan Meijer,et al.  Analytical model describing the relationship between laser power, beam velocity, and melt pool depth in the case of laser remelting, realloying, and redispersing , 1997, Other Conferences.

[49]  K. Acker,et al.  Influence of tungsten carbide particle size and distribution on the wear resistance of laser clad WC/Ni coatings , 2005 .

[50]  Y. Mai,et al.  Laser shock processing and its effects on microstructure and properties of metal alloys: a review , 2002 .

[51]  M. Lima,et al.  Morphological instability of the austenite growth front in a laser remelted iron–carbon–silicon alloy , 2000 .

[52]  N. Dahotre,et al.  The influence of metals and carbides during laser surface modification of low alloy steel , 1999 .

[53]  D. Kechemair,et al.  A Systematic Method for the Design of a Multivariable Controller Actuating Power and Speed during a CO2 Laser Surface Treatment , 1992 .

[54]  P. Peyre,et al.  Influence of high power diode laser surface melting on the pitting corrosion resistance of type 316L stainless steel , 2002 .

[55]  Bernardus Engelina Römer Gerardus Richardus,et al.  Process control of laser surface alloying , 1998 .

[56]  S. Chakraborty,et al.  NUMERICAL MODELING OF HEAT AND MASS TRANSFER IN LASER SURFACE ALLOYING: NON-EQUILIBRIUM SOLIDIFICATION EFFECTS , 2002 .

[57]  Janez Grum,et al.  Comparison of measured and calculated thickness of martensite and ledeburite shells around graphite nodules in the hardened layer of nodular iron after laser surface remelting , 2002 .

[58]  R. Colaço,et al.  Development of metal matrix composite materials for wear resistant coatings using a laser rapid-alloy-prototyping technique , 2000 .

[59]  F. Vollertsen,et al.  Non-Thermal Laser Stretch-Forming , 2005 .

[60]  R. M. Hofstra,et al.  Shadowgraphic imaging of material removal during laser drilling with a long pulse excimer laser , 2005 .

[61]  Jorma Vihinen,et al.  Improving corrosion properties of high-velocity oxy-fuel sprayed inconel 625 by using a high-power continuous wave neodymium-doped yttrium aluminum garnet laser , 2000 .

[63]  M. Kulka,et al.  Microstructure and properties of borided 41Cr4 steel after laser surface modification with re-melting , 2003 .

[64]  W. Kurz,et al.  Microstructure selection maps for Al-Fe alloys , 1995 .

[65]  Jehnming Lin,et al.  A simple model of powder catchment in coaxial laser cladding , 1999 .

[66]  I. Altenberger,et al.  Alternative mechanische Oberflächen behandlungsverfahren zur Schwingfestigkeitssteigerung∗ , 2004 .

[67]  Verein Deutscher Eisenhüttenleute,et al.  Atlas zur Wärmebehandlung der Stähle , 1954 .

[68]  M. K. Banerjee,et al.  Improvement of Intergranular Corrosion Resistance of Type 316 Stainless Steel by Laser Surface Melting , 2001 .

[69]  T. Anderson Practical aspects of laser cladding with high power lasers , 2002 .

[70]  Wolfgang Schulz,et al.  Laser machining by short and ultrashort pulses, state of the art , 2002 .

[71]  J. Majumdar,et al.  A mathematical model to predict the thermal history and microstructure developed in laser surface alloying , 2002 .

[72]  Rui M. Vilar,et al.  Laser cladding , 2003, Advanced Laser Technologies.

[73]  J. Meijer Laser Beam Machining (LBM), State of the Art and new Opportunities , 2004 .

[74]  Hau Chung Man,et al.  Effect of processing conditions on the corrosion performance of laser surface-melted AISI 440C martensitic stainless steel , 2003 .

[75]  M. Rappaz,et al.  A simple but realistic model for laser cladding , 1994 .

[76]  Berthold Scholtes,et al.  On the influence of mechanical surface treatments—deep rolling and laser shock peening—on the fatigue behavior of Ti–6Al–4V at ambient and elevated temperatures , 2003 .

[77]  Y. Yao,et al.  Microscale Laser Shock Peening of Thin Films, Part 1: Experiment, Modeling and Simulation , 2004 .

[78]  Weidong Huang,et al.  Effects of crystal orientation on microstructure of molten pool in laser rapidly solidified DD2 single crystal , 2002 .

[79]  Laurent Berthe,et al.  FEM simulation of residual stresses induced by laser Peening , 2003 .

[80]  Yun Peng,et al.  Melt pool shape and dilution of laser cladding with wire feeding , 2000 .

[81]  C. Xie,et al.  Laser-melted surface layer of steel X165CrMoV12-1 and its tempering characteristics , 2000 .

[82]  Joung-Soo Kim,et al.  Influence of laser surface melting on the susceptibility to intergranular corrosion of sensitized Alloy 600 , 2001 .

[83]  X. Chun Study on Laser Bending on Metal Sheets , 2003 .

[84]  W. Zhuang,et al.  Mechanical Surface Treatment Technologies for Gas Turbine Engine Components , 2003 .

[85]  Ken Watkins,et al.  Influence of the overlapped area on the corrosion behaviour of laser treated aluminium alloys , 1998 .

[86]  E. Beyer,et al.  Laser Gas Alloying of Titanium – New Possibilities for Severe Wear Loaded Components in Medicine , 2001 .

[87]  Chongdu Cho,et al.  Computational mechanics of laser cladding process , 2004 .

[88]  F. Vollertsen,et al.  The laser bending of steel foils for microparts by the buckling mechanism-a model , 1995 .

[89]  G. Thompson,et al.  Large area laser surface treatment of aluminium alloys for pitting corrosion protection , 2003 .

[90]  Alexander Fischer,et al.  Randschichtlegieren von AlSi8Cu3-Zylinderkurbelgehäusen mit Silizium mittels Diodenlaser , 2003 .

[91]  C. York,et al.  LASER‐INDUCED ``BLOW‐OFF'' PHENOMENA , 1968 .

[92]  L. Tricarico,et al.  Numerical finite element investigation on laser cladding treatment of ring geometries , 2004 .

[93]  Jan Hannweber,et al.  Integrated laser system for heat treatment with high power diode laser , 2004 .

[94]  A. Kar,et al.  Temperatures, pressures and stresses during laser shock processing , 2003 .

[95]  B. P. Fairand,et al.  Effects of Laser Induced Shock Waves on Metals , 1981 .

[96]  P. Ballard,et al.  Physical study of laser-produced plasma in confined geometry , 1990 .

[97]  S. J. Thomas,et al.  Momentum Transfer Produced by Focused Laser Giant Pulses , 1966 .

[98]  Johan Meijer,et al.  Modelling and observation of laser welding: The effect of latent heat , 2003 .

[99]  Remy Fabbro,et al.  Modifications of mechanical and electrochemical properties of stainless steel surfaces by laser shock processing , 1997, Other Conferences.

[100]  K. Wissenbach,et al.  Remelting of surface coatings on steel by CO2 laser radiation , 1991 .