Multifunctional structure-battery composites for marine systems

Multifunctional structure-battery composites were developed using fiber reinforced marine composites for structure function and rechargeable lithium-ion cells for energy storage and structure function. Laminate, sandwich, and modular beam configurations were fabricated and tested to determine flexural stiffness and strength, energy storage capacity versus discharge rate, and buoyancy (density). The structure-battery composites exhibited higher flexural stiffness but lower strength than equivalent unifunctional designs, energy storage capacities between 40 and 60 Wh/L, and buoyancies bracketing the unifunctional specimen values. Issues requiring further attention include: improved bending strength, simplified fabrication, reversible attachments for modular components, electrical wiring and connections, and battery management circuitry.

[1]  M. Wysocki,et al.  Structural capacitor materials made from carbon fibre epoxy composites , 2010 .

[2]  Ji-Won Choi,et al.  Issue and challenges facing rechargeable thin film lithium batteries , 2008 .

[3]  Ronald F. Gibson,et al.  A review of recent research on mechanics of multifunctional composite materials and structures , 2010 .

[4]  Max Shtein,et al.  Fiber-based flexible thermoelectric power generator , 2008 .

[5]  Thomas Christen,et al.  Theory of Ragone plots , 2000 .

[6]  Eric D. Wetzel,et al.  Improving multifunctional behavior in structural electrolytes through copolymerization of structure- and conductivity-promoting monomers , 2009 .

[7]  Wenwu Cao,et al.  Multifunctional Materials — the Basis for Adaptronics , 1999 .

[8]  Embeddable Batteries: Taking Shape , 2010 .

[9]  Tony Pereira,et al.  Embedding thin-film lithium energy cells in structural composites , 2008 .

[10]  Daniel DeSchepper,et al.  Design and Response of a Structural Multifunctional Fuel Cell , 2008 .

[11]  S. Greenbaum,et al.  Multifunctional MnO2−Carbon Nanoarchitectures Exhibit Battery and Capacitor Characteristics in Alkaline Electrolytes , 2009 .

[12]  James P. Thomas,et al.  Hydrocarbon Fuels as Multifunctional Structure-Power for Unmanned Air Vehicles , 2005 .

[13]  Hsiu-Ping Lin,et al.  Temperature Effects on Li-Ion Cell Performance , 2002 .

[14]  Daniel J. Inman,et al.  Multifunctional self-charging structures using piezoceramics and thin-film batteries , 2010 .

[15]  Guglielmo S. Aglietti,et al.  The thermal environment encountered in space by a multifunctional solar array , 2010 .

[16]  M. A. Siddiq Qidwai,et al.  Performance Characterization of Multifunctional Structure-Battery Composites for Marine Applications , 2008 .

[17]  D. Peairs,et al.  A Metric for Characterization of Multifunctional Fuel Cell Designs , 2011 .

[18]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[19]  James P. Thomas,et al.  Mechanical design and performance of composite multifunctional materials , 2004 .

[20]  Guglielmo S. Aglietti,et al.  Structural performance of a multifunctional spacecraft structure based on plastic lithium-ion batteries , 2010 .

[21]  Guglielmo S. Aglietti,et al.  Satellite multi-functional power structure: Feasibility and mass savings , 2008 .

[22]  Muhammad A. Qidwai,et al.  Multifunctional Applications of Thin Film Li Polymer Battery Cells , 2005 .

[23]  Ann Marie Sastry,et al.  Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems , 2008 .

[24]  E. Wetzel,et al.  Design and performance of multifunctional structural composite capacitors , 2011 .

[25]  James F. Snyder,et al.  Evaluation of Commercially Available Carbon Fibers, Fabrics, and Papers for Potential Use in Multifunctional Energy Storage Applications , 2009 .

[26]  Elena Sherman,et al.  Design and fabrication of multifunctional structural batteries , 2009 .

[27]  Henry A. Sodano,et al.  Characterization of multifunctional structural capacitors for embedded energy storage , 2009 .

[28]  Raouf O. Loutfy,et al.  Carbon-carbon composite as anodes for lithium-ion battery systems , 2001 .

[29]  Tony Pereira,et al.  Performance of Thin‐Film Lithium Energy Cells under Uniaxial Pressure , 2008 .

[30]  Eric D. Wetzel,et al.  Electrochemical and mechanical behavior in mechanically robust solid polymer electrolytes for use in multifunctional structural batteries , 2007 .

[31]  M. Wysocki,et al.  Structural batteries made from fibre reinforced composites , 2010 .

[32]  James C. Kellogg,et al.  Energy scavenging for small-scale unmanned systems , 2006 .

[33]  David Cebon,et al.  Materials Selection in Mechanical Design , 1992 .

[34]  Leo Christodoulou,et al.  Multifunctional material systems: The first generation , 2003 .

[35]  James P. Thomas,et al.  MULTIFUNCTIONAL STRUCTURE-BATTERY MATERIALS FOR ENHANCED PERFORMANCE IN SMALL UNMANNED AIR VEHICLES , 2003 .

[36]  André Noth,et al.  Design of Solar Powered Airplanes for Continuous Flight , 2008 .

[37]  P. Notten,et al.  High energy density strategies: from hydride-forming materials research to battery integration , 2004 .

[38]  B. Neudecker,et al.  LiBaCore II: Power Storage in Primary Structure , 2002 .

[39]  T. Pereira,et al.  Energy Storage Structural Composites: a Review , 2009 .

[40]  G. Sachs,et al.  Periodic Optimal Flight of Solar Aircraft with Unlimited Endurance Performance , 2010 .

[41]  Ping Zhang,et al.  The ionic conductivity and mechanical property of electrospun P(VdF-HFP)/PMMA membranes for lithium ion batteries , 2009 .

[42]  Tony Pereira,et al.  The performance of thin-film Li-ion batteries under flexural deflection , 2006 .

[43]  Muhammad A. Qidwai,et al.  The design and application of multifunctional structure-battery materials systems , 2005 .

[44]  Henry A. Sodano,et al.  A review of power harvesting using piezoelectric materials (2003–2006) , 2007 .