On the State Complexity of Closures and Interiors of Regular Languages with Subwords

We study the state complexity of the set of subwords and superwords of regular languages, and provide new lower bounds in the case of languages over a two-letter alphabet. We also consider the dual interior sets, for which the nondeterministic state complexity has a doubly-exponential upper bound. We prove a matching doubly-exponential lower bound for downward interiors in the case of an unbounded alphabet.

[1]  Narad Rampersad,et al.  On NFAs where all states are final, initial, or both , 2008, Theor. Comput. Sci..

[2]  Mustapha Arfi Polynomial Operations on Rational Languages , 1987, STACS.

[3]  Parosh Aziz Abdulla,et al.  Using Forward Reachability Analysis for Verification of Lossy Channel Systems , 2004, Formal Methods Syst. Des..

[4]  Roland Meyer,et al.  The Downward-Closure of Petri Net Languages , 2010, ICALP.

[5]  Alexander Okhotin,et al.  On the State Complexity of Scattered Substrings and Superstrings , 2010, Fundam. Informaticae.

[6]  Pierre-Cyrille Héam,et al.  On Shuffle Ideals , 2002, RAIRO Theor. Informatics Appl..

[7]  Philippe Schnoebelen,et al.  On the index of Simon's congruence for piecewise testability , 2015, Inf. Process. Lett..

[8]  Neil Immerman,et al.  Languages that Capture Complexity Classes , 1987, SIAM J. Comput..

[9]  Zhi Xu,et al.  The Computational Complexity of Universality Problems for Prefixes, Suffixes, Factors, and Subwords of Regular Languages , 2009, Fundam. Informaticae.

[10]  Sheng Yu State Complexity: Recent Results and Open Problems , 2005, Fundam. Informaticae.

[11]  Pascal Weil,et al.  Polynomial closure and unambiguous product , 1995, Theory of Computing Systems.

[12]  Markus Holzer,et al.  Finding Lower Bounds for Nondeterministic State Complexity Is Hard , 2006, Developments in Language Theory.

[13]  Jan van Leeuwen,et al.  Effective constructions in well-partially- ordered free monoids , 1978, Discret. Math..

[14]  Bruno Courcelle,et al.  On Constructing Obstruction Sets of Words , 1991, Bull. EATCS.

[15]  Jacques Sakarovitch,et al.  The universal automaton , 2008, Logic and Automata.

[16]  Philippe Schnoebelen,et al.  The Power of Priority Channel Systems , 2013, CONCUR.

[17]  Sven Rahmann,et al.  Algorithms for subsequence combinatorics , 2008, Theor. Comput. Sci..

[18]  L. H. Haines On free monoids partially ordered by embedding , 1969 .

[19]  Jean-Camille Birget The State Complexity of \Sigma * L and its Connection with Temporal Logic , 1996, Inf. Process. Lett..

[20]  Martin Kutrib,et al.  More on the Size of Higman-Haines Sets: Effective Constructions , 2007, MCU.

[21]  Margus Veanes,et al.  An Evaluation of Automata Algorithms for String Analysis , 2011, VMCAI.

[22]  Jean-Camille Birget,et al.  Partial Orders on Words, Minimal Elements of Regular Languages and State Complexity , 1993, Theor. Comput. Sci..

[23]  J. Conway Regular algebra and finite machines , 1971 .

[24]  Nathalie Bertrand,et al.  Computable fixpoints in well-structured symbolic model checking , 2013, Formal Methods Syst. Des..

[25]  Arto Salomaa,et al.  State complexity of combined operations , 2007, Theor. Comput. Sci..

[26]  Ricardo A. Baeza-Yates,et al.  Searching Subsequences , 1991, Theor. Comput. Sci..

[27]  Janusz A. Brzozowski,et al.  Quotient complexity of ideal languages , 2013, Theor. Comput. Sci..

[28]  J. Kahn Entropy, independent sets and antichains: A new approach to Dedekind's problem , 2001 .

[29]  Michael Luttenberger,et al.  Finite Automata for the Sub- and Superword Closure of CFLs: Descriptional and Computational Complexity , 2014, LATA.