Rotationally resolved pulsed field ionization photoelectron study of CO+(X 2Σ+,v+=0–42) in the energy range of 13.98–21.92 eV

We have obtained rotationally resolved pulsed field ionization–photoelectron (PFI-PE) spectra of CO in the energy range of 13.98–21.92 eV, covering the ionization transitions CO+(X 2Σ+,v+=0–42,N+)←CO(X 1Σ+,v″=0,N″). The PFI-PE bands for CO+ (X 2Σ+, v+=8–22, 24, and 28–39) obtained here represent the first rotationally resolved spectroscopic data for these states. The high-resolution features observed in the PFI-PE spectra allow the identification of vibrational bands for the CO+ (X 2Σ+, v+=10, 14, 15, 17, 18, 21, 24, 25, 29–31, 33, 35–37, and 39) states, which strongly overlap with prominent vibrational bands of the CO+(A 2Π3/2,1/2,B 2Σ+) states. The simulation using the Buckingham–Orr–Sichel model has provided accurate molecular constants for CO+(X 2Σ+,v+=0–42), including ionization energies, vibrational constants (ωe+=2218.8±3.5 cm−1, ωe+xe+=16.20±0.32 cm−1, ωe+ye+=0.074±0.011 cm−1, and ωe+ze+=−0.001 83±0.000 13 cm−1), and rotational constants [Be+=1.9797±0.0051 cm−1, αe+=0.0201±0.0011 cm−1, γe+=0.000 1...

[1]  M. Evans,et al.  Rotationally resolved pulsed field ionization photoelectron bands of O2+(X 2Π1/2,3/2g, v+=0–38) in the energy range of 12.05–18.15 eV , 1999 .

[2]  C. Ng,et al.  High resolution pulsed field ionization photoelectron spectroscopy using multibunch synchrotron radiation: Time-of-flight selection scheme , 1999 .

[3]  F. Merkt,et al.  Role of Electron Spin Coupling in Molecular Photoionization: The b Σ g − 4 ← X Σ g − 3 Photoelectronic Transition of O 2 , 1998 .

[4]  P. Heimann,et al.  Rotational-resolved pulsed field ionization photoelectron bands for H2+(X 2Σg+, v+=0, 2, 9 and 11) , 1998 .

[5]  P. Heimann,et al.  High-resolution photoelectron spectroscopy using multibunch synchrotron radiation: , 1998 .

[6]  M. Evans,et al.  High Resolution Study of Low Lying Correlation Satellites in Xenon , 1998 .

[7]  P. Heimann,et al.  A high resolution pulsed field ionization photoelectron study of O2 using third generation undulator synchrotron radiation , 1997 .

[8]  H. Padmore,et al.  Performance of the vacuum ultraviolet high-resolution and high-flux beamline for chemical dynamics studies at the Advanced Light Source , 1997 .

[9]  P. Heimann,et al.  High resolution threshold and pulsed field ionization photoelectron spectroscopy using multi-bunch synchrotron radiation , 1997 .

[10]  H. Rauer,et al.  Optical Observations of Comet Hale-Bopp (C/1995 O1) at Large Heliocentric Distances Before Perihelion , 1997, Science.

[11]  Philip A. Heimann,et al.  A high resolution energy-selected kinetic energy release study of the process SF6+hν→SF5++F+e−: Heat of formation of SF5+ , 1997 .

[12]  D. Rolland,et al.  Pulsed-field ionization spectroscopy of CO via the E1Π state and NO via the B2Π state , 1996 .

[13]  P. Heimann,et al.  A high resolution photoionization study of Ne and Ar: Observation of mass analyzed threshold ions using synchrotron radiation and direct current electric fields , 1996 .

[14]  A. Mellinger,et al.  Laser‐reduced fluorescence study of the carbon monoxide nd triplet Rydberg series: Experimental results and multichannel quantum defect analysis , 1996 .

[15]  Baranov,et al.  Fractional Stark state selective electric field ionization of very high-n Rydberg states of molecules. , 1996, Physical review letters.

[16]  A. Kung,et al.  A differentially pumped harmonic filter on the Chemical Dynamics Beamline at the Advanced Light Source , 1995 .

[17]  W. Kong,et al.  Threshold Photoelectron Spectroscopy of CO+(A 2.PI.j) .rarw. CO(X 1.SIGMA.+) , 1995 .

[18]  V. McKoy,et al.  Threshold Photoelectron Spectroscopy of the A ^2Π state of CO^+ , 1995 .

[19]  C. Ng,et al.  High resolution laser photoionization and photoelectron studies , 1995 .

[20]  W. Kong,et al.  Rotationally resolved threshold photoelectron spectroscopy of O2 using coherent XUV: formation of vibrationally excited ions in the Franck–Condon gap , 1994 .

[21]  C. Ng,et al.  Unimolecular and bimolecular ion-molecule reaction dynamics , 1994 .

[22]  H. Fielding,et al.  Intensity perturbations in the ν+ = 2, 1 and 0 bands of the zero-kinetic-energy (ZEKE) photoelectron spectrum of N2 , 1993 .

[23]  V. McKoy,et al.  Rotationally state-selective photoionization dynamics of molecules at near-threshold photoelectron energies , 1993 .

[24]  F. Merkt,et al.  Rotational line intensities in zero kinetic energy photoelectron spectroscopy (ZEKE-PES) , 1993 .

[25]  V. McKoy,et al.  Pulsed‐field ionization threshold photoelectron spectroscopy with coherent extreme ultraviolet radiation: A comparison of CO and N2 , 1993 .

[26]  J. Flament,et al.  MCSCF-Cl calculations of the CO+ ion , 1993 .

[27]  Merkt,et al.  Rotationally resolved zero-kinetic-energy photoelectron spectrum of nitrogen. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[28]  E. W. Schlag,et al.  High-Resolution Zero Kinetic Energy (ZEKE) Photoelectron Spectroscopy of Molecular Systems , 1991 .

[29]  R. Zare,et al.  2+1 resonantly enhanced multiphoton ionization of CO via the E 1Π–X 1Σ+ transition: From measured ion signals to quantitative population distributions , 1990 .

[30]  R. Zare,et al.  Selection rules for the photoionization of diatomic molecules , 1990 .

[31]  C. Ng,et al.  A photoion-photoelectron coincidence study of (CO) 2 and (CO) 3 , 1989 .

[32]  C. Ng,et al.  A Study of intramolecular charge transfer in mixed Ar/CO dimer and trimer ions using the photoion-photoelectron coincidence method , 1989 .

[33]  P. Roy,et al.  Autoionization dynamics in the valence-shell photoionization spectrum of CO , 1988 .

[34]  I. Nenner,et al.  Electronic autoionization in carbon monoxide: the effects of the vibrational motion , 1987 .

[35]  S. Dixit,et al.  Ionic rotational selection rules for (n + 1) resonant enhanced multiphoton ionization , 1986 .

[36]  P. Brimblecombe,et al.  Chemistry of Atmospheres. , 1986 .

[37]  L. Magnani,et al.  CO(+) fluorescence in comets , 1985 .

[38]  S. Pratt,et al.  Two photon resonant, four photon ionization of CO via the A 1Π state with photoelectron energy analysis , 1983 .

[39]  I. Nenner,et al.  Interactions between neutral dissociation and ionization continua in N2O , 1983 .

[40]  S. Pratt,et al.  Photoelectron studies of resonant multiphoton ionization of CO via the A 1Π state , 1983 .

[41]  F. Sasaki,et al.  Ab initio potential energy curves for the CO+ ion and a study of the photoelectron spectra of CO , 1979 .

[42]  J. Gardner,et al.  Vibrational intensity distributions for the various electronic states of O2/+/, N2/+/ and CO/+/ produced by photoionization , 1978 .

[43]  James A. R. Samson,et al.  Experimental vibrational intensity distributions for continuum photoionization to the X2Σ+, A2Π, and B2Σ+ states of CO+ and N2+ , 1974 .

[44]  S. Ogawa,et al.  Absorption spectrum of CO in the Hopfield helium continuum region, 600-1020 Å , 1972 .

[45]  B. Orr,et al.  A Discussion on photoelectron spectroscopy - Angular distributions and intensity in molecular photoelectron spectroscopy I. General theory for diatomic molecules , 1970, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[46]  Paul H. Krupenie The band spectrum of carbon monoxide , 1966 .

[47]  M. Wacks Franck—Condon Factors for the Ionization of CO, NO, and O2 , 1964 .

[48]  J. C. Larrabee,et al.  Absorption Coefficients of Carbon Monoxide in the 1006–600‐Å Wavelength Region , 1964 .

[49]  K. Rao The Band Spectrum of CO^{+}. I. First Negative System (B^{2}Σ-X^{2}Σ). , 1950 .

[50]  G. Herzberg Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules , 1939 .