Computing eigenvalue bounds for iterative subspace matrix methods
暂无分享,去创建一个
[1] Chandler Davis. The rotation of eigenvectors by a perturbation , 1963 .
[2] G. W. Stewart,et al. Matrix algorithms , 1998 .
[3] Ron L. Shepard,et al. Reducing I/O costs for the eigenvalue procedure in large‐scale configuration interaction calculations , 2002, J. Comput. Chem..
[4] W. Ritz. Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. , 1909 .
[5] J. Olsen,et al. Passing the one-billion limit in full configuration-interaction (FCI) calculations , 1990 .
[6] E. Davidson. The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices , 1975 .
[7] Gerard L. G. Sleijpen,et al. A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..
[8] W. Kahan,et al. The Rotation of Eigenvectors by a Perturbation. III , 1970 .
[9] Jeffrey L. Tilson,et al. The subspace projected approximate matrix (SPAM) modification of the Davidson method , 2001 .
[10] Gerard L. G. Sleijpen,et al. A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM Rev..
[11] Thomas Müller,et al. High-level multireference methods in the quantum-chemistry program system COLUMBUS: Analytic MR-CISD and MR-AQCC gradients and MR-AQCC-LRT for excited states, GUGA spin–orbit CI and parallel CI density , 2001 .
[12] H. V. D. Vorst,et al. Jacobi-davidson type methods for generalized eigenproblems and polynomial eigenproblems , 1995 .
[13] G. Stewart. Matrix Algorithms, Volume II: Eigensystems , 2001 .
[14] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[15] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .