Computing eigenvalue bounds for iterative subspace matrix methods

A procedure is presented for the computation of bounds to eigenvalues of the generalized hermitian eigenvalue problem and to the standard hermitian eigenvalue problem. This procedure is applicable to iterative subspace eigenvalue methods and to both outer and inner eigenvalues. The Ritz values and their corresponding residual norms, all of which are computable quantities, are needed by the procedure. Knowledge of the exact eigenvalues is not needed by the procedure, but it must be known that the computed Ritz values are isolated from exact eigenvalues outside of the Ritz spectrum and that there are no skipped eigenvalues within the Ritz spectrum range. A multipass refinement procedure is described to compute the bounds for each Ritz value. This procedure requires O(m) effort where m is the subspace dimension for each pass.

[1]  Chandler Davis The rotation of eigenvectors by a perturbation , 1963 .

[2]  G. W. Stewart,et al.  Matrix algorithms , 1998 .

[3]  Ron L. Shepard,et al.  Reducing I/O costs for the eigenvalue procedure in large‐scale configuration interaction calculations , 2002, J. Comput. Chem..

[4]  W. Ritz Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. , 1909 .

[5]  J. Olsen,et al.  Passing the one-billion limit in full configuration-interaction (FCI) calculations , 1990 .

[6]  E. Davidson The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices , 1975 .

[7]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..

[8]  W. Kahan,et al.  The Rotation of Eigenvectors by a Perturbation. III , 1970 .

[9]  Jeffrey L. Tilson,et al.  The subspace projected approximate matrix (SPAM) modification of the Davidson method , 2001 .

[10]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM Rev..

[11]  Thomas Müller,et al.  High-level multireference methods in the quantum-chemistry program system COLUMBUS: Analytic MR-CISD and MR-AQCC gradients and MR-AQCC-LRT for excited states, GUGA spin–orbit CI and parallel CI density , 2001 .

[12]  H. V. D. Vorst,et al.  Jacobi-davidson type methods for generalized eigenproblems and polynomial eigenproblems , 1995 .

[13]  G. Stewart Matrix Algorithms, Volume II: Eigensystems , 2001 .

[14]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[15]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .