From Morse Triangular Form of ODE Control Systems to Feedback Canonical Form of DAE Control Systems
暂无分享,去创建一个
[1] Witold Respondek,et al. Geometric analysis of differential-algebraic equations via linear control theory , 2020, SIAM J. Control. Optim..
[2] A. Bunse-Gerstner,et al. Feedback design for regularizing descriptor systems , 1999 .
[3] Michel Malabre,et al. External reachability (reachability with pole assignment by p. d. feedback) for implicit descriptions , 1993, Kybernetika.
[4] F. Lewis. A survey of linear singular systems , 1986 .
[5] K. Ozcaldiran. A complete classification of controllable singular systems , 1990, 29th IEEE Conference on Decision and Control.
[6] B. Molinari. A strong controllability and observability in linear multivariable control , 1976 .
[7] A canonical form for controllable singular systems , 1989 .
[8] Yahao Chen. Geometric analysis of differential-algebraic equations and control systems : linear, nonlinear and linearizable , 2019 .
[9] E. Fridman. Stability of linear descriptor systems with delay: a Lyapunov-based approach , 2002 .
[10] Timo Reis,et al. Regularization of linear time-invariant differential-algebraic systems , 2015, Syst. Control. Lett..
[11] Pavol Brunovský,et al. A classification of linear controllable systems , 1970, Kybernetika.
[12] L. Dai,et al. Singular Control Systems , 1989, Lecture Notes in Control and Information Sciences.
[13] P. Dooren,et al. An improved algorithm for the computation of Kronecker's canonical form of a singular pencil , 1988 .
[14] Jean Jacques Loiseau,et al. On pole structure assignment in linear systems , 2009, Int. J. Control.
[15] Heide Glüsing-Lüerben. Feedback canonical form for singular systems , 1990 .
[16] A. Morse,et al. Decoupling and Pole Assignment in Linear Multivariable Systems: A Geometric Approach , 1970 .
[17] Thomas Berger,et al. Disturbance decoupling by behavioral feedback for linear differential-algebraic systems , 2017, Autom..
[18] T. Berger,et al. The quasi-Weierstraß form for regular matrix pencils , 2012 .
[19] A. Morse. Structural Invariants of Linear Multivariable Systems , 1973 .
[20] Uri M. Ascher,et al. The numerical solution of delay-differential-algebraic equations of retarded and neutral type , 1995 .
[21] B. Molinari. Structural invariants of linear multivariable systems , 1978 .
[22] P. Dooren. The Computation of Kronecker's Canonical Form of a Singular Pencil , 1979 .
[23] G. Basile,et al. Controlled and conditioned invariants in linear system theory , 1992 .
[24] J. Pearson. Linear multivariable control, a geometric approach , 1977 .
[25] Andras Varga. Computation of Kronecker-like forms of a system pencil: applications, algorithms and software , 1996, Proceedings of Joint Conference on Control Applications Intelligent Control and Computer Aided Control System Design.
[26] S. Campbell. Singular linear systems of differential equations with delays , 1980 .
[27] T. Berger,et al. Hamburger Beiträge zur Angewandten Mathematik Controllability of linear differential-algebraic systems-A survey , 2012 .
[28] K. Özçaldiran. A geometric characterization of the reachable and the controllable subspaces of descriptor systems , 1986 .
[29] Frank L. Lewis,et al. A tutorial on the geometric analysis of linear time-invariant implicit systems , 1992, Autom..
[30] Stephan Trenn,et al. The Quasi-Kronecker Form For Matrix Pencils , 2012, SIAM J. Matrix Anal. Appl..
[31] Thomas Berger,et al. Zero Dynamics and Stabilization for Linear DAEs , 2014 .
[32] Jean Jacques Loiseau,et al. Feedback canonical forms of singular systems , 1991, Kybernetika.
[33] Stephan Trenn. A normal form for pure differential algebraic systems , 2009 .
[34] A. Morse. System Invariants under Feedback and Cascade Control , 1976 .