Parallel cellular automata for large-scale urban simulation using load-balancing techniques

Cellular automata (CA), which are a kind of bottom-up approaches, can be used to simulate urban dynamics and land use changes effectively. Urban simulation usually involves a large set of GIS data in terms of the extent of the study area and the number of spatial factors. The computation capability becomes a bottleneck of implementing CA for simulating large regions. Parallel computing techniques can be applied to CA for solving this kind of hard computation problem. This paper demonstrates that the performance of large-scale urban simulation can be significantly improved by using parallel computation techniques. The proposed urban CA is implemented in a parallel framework that runs on a cluster of PCs. A large region usually consists of heterogeneous or polarized development patterns. This study proposes a line-scanning method of load balance to reduce waiting time between parallel processors. This proposed method has been tested in a fast-growing region, the Pearl River Delta. The experiments indicate that parallel computation techniques with load balance can significantly improve the applicability of CA for simulating the urban development in this large complex region.

[1]  Roger D. Hersch,et al.  Dynamic load balancing of parallel cellular automata , 2000, SPIE Optics + Photonics.

[2]  Xia Li,et al.  Modelling sustainable urban development by the integration of constrained cellular automata and GIS , 2000, Int. J. Geogr. Inf. Sci..

[3]  Fulong Wu,et al.  Calibration of stochastic cellular automata: the application to rural-urban land conversions , 2002, Int. J. Geogr. Inf. Sci..

[4]  Michael Batty,et al.  Online participation: The Woodberry Down Experiment, Centre for Advanced Spatial Analysis (CASA), University College London , 2002 .

[5]  B. Soares-Filho,et al.  dinamica—a stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier , 2002 .

[6]  Alexey Voinov,et al.  Introduction: Spatially Explicit Landscape Simulation Models , 2004 .

[7]  Csaba Andras Moritz,et al.  Performance Modeling and Evaluation of MPI , 2001, J. Parallel Distributed Comput..

[8]  Roger White,et al.  Cellular Automata and Fractal Urban Form: A Cellular Modelling Approach to the Evolution of Urban Land-Use Patterns , 1993 .

[9]  Stefania Bandini,et al.  Cellular automata: From a theoretical parallel computational model to its application to complex systems , 2001, Parallel Comput..

[10]  Ioannis G. Karafyllidis,et al.  A model for predicting forest fire spreading using cellular automata , 1997 .

[11]  L. Vokorokos,et al.  Parallel computer system utilization in geographic information systems , 2005, IEEE 3rd International Conference on Computational Cybernetics, 2005. ICCC 2005..

[12]  Robert Gilmore Pontius,et al.  Comparison of the structure and accuracy of two land change models , 2005, Int. J. Geogr. Inf. Sci..

[13]  Stan Openshaw,et al.  High-Performance Computing and Geography: Developments, Issues, and Case Studies , 1998 .

[14]  Jiannong Cao,et al.  High-level abstractions for message-passing parallel programming , 2003, Parallel Comput..

[15]  D. Komatitsch,et al.  Spectral-element simulations of global seismic wave propagation: II. Three-dimensional models, oceans, rotation and self-gravitation , 2002 .

[16]  Andrea Clematis,et al.  High performance computing with geographical data , 2003, Parallel Comput..

[17]  Rocco Rongo,et al.  A Parallel Cellular Automata Environment on Multicomputers for Computational Science , 1995, Parallel Comput..

[18]  Xiaoping Liu,et al.  An extended cellular automaton using case‐based reasoning for simulating urban development in a large complex region , 2006 .

[19]  Paul Manneville,et al.  Cellular Automata and Modeling of Complex Physical Systems , 1989 .

[20]  Peter Deadman,et al.  Modelling Rural Residential Settlement Patterns with Cellular Automata , 1993 .

[21]  K. Clarke,et al.  A Cellular Automaton Model of Wildfire Propagation and Extinction , 1994 .

[22]  Rolf Hempel,et al.  The emergence of the MPI message passing standard for parallel computing , 1999 .

[23]  G. Sirakoulis,et al.  A cellular automaton model for the effects of population movement and vaccination on epidemic propagation , 2000 .

[24]  F. Wu,et al.  Simulation of Land Development through the Integration of Cellular Automata and Multicriteria Evaluation , 1998 .

[25]  David A. Yuen,et al.  Toward an automated parallel computing environment for geosciences , 2007 .

[26]  Christophe Lett,et al.  Comparison of a cellular automata network and an individual-based model for the simulation of forest dynamics , 1999 .

[27]  Keith C. Clarke,et al.  A Self-Modifying Cellular Automaton Model of Historical Urbanization in the San Francisco Bay Area , 1997 .

[28]  Xia Li,et al.  Data mining of cellular automata's transition rules , 2004, Int. J. Geogr. Inf. Sci..

[29]  Zahari Zlatev,et al.  Parallel matrix computations in air pollution modelling , 2002, Parallel Comput..

[30]  Jörg-Rüdiger Sack,et al.  Parallel Neighborhood Modeling , 1996, SPAA.

[31]  Francisco Almeida,et al.  Design of parallel algorithms for the single resource allocation problem , 2000, Eur. J. Oper. Res..

[32]  G. Glatzmaier,et al.  A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle , 1995 .

[33]  Michael J. Quinn,et al.  Parallel programming in C with MPI and OpenMP , 2003 .

[34]  E. Goles Cellular Automata, Dynamics and Complexity , 1989 .

[35]  Jarek Nieplocha,et al.  Efficient Algorithms for Ghost Cell Updates on Two Classes of MPP Architectures , 2002, IASTED PDCS.

[36]  Michael Murray Growing the cities , 2006 .

[37]  Anthony Gar-On Yeh,et al.  Neural-network-based cellular automata for simulating multiple land use changes using GIS , 2002, Int. J. Geogr. Inf. Sci..

[38]  D. Komatitsch,et al.  Spectral-element simulations of global seismic wave propagation—I. Validation , 2002 .

[39]  Yuemin Ding,et al.  Spatial Strategies for Parallel Spatial Modelling , 1996, Int. J. Geogr. Inf. Sci..

[40]  Alexey Voinov,et al.  Landscape simulation modeling : a spatially explicit, dynamic approach , 2003 .

[41]  Michael Batty,et al.  From Cells to Cities , 1994 .

[42]  David A. Yuen,et al.  3-D convection studies on the thermal state in the lower mantle with post-perovskite phase transition , 2006 .

[43]  D. J. Wallace,et al.  The use of the CAPE Environment in the simulation of rock fracturing , 1991, Concurr. Pract. Exp..