Synergistically integrated phosphonated poly(pentafluorostyrene) for fuel cells

[1]  Cy H. Fujimoto,et al.  Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers , 2020 .

[2]  C. Arges,et al.  Stable and Highly Conductive Polycation–Polybenzimidazole Membrane Blends for Intermediate Temperature Polymer Electrolyte Membrane Fuel Cells , 2020 .

[3]  Cy H. Fujimoto,et al.  Alkaline Stability of Quaternized Diels–Alder Polyphenylenes , 2019, Macromolecules.

[4]  P. Kohl,et al.  Composite Poly(norbornene) Anion Conducting Membranes for Achieving Durability, Water Management and High Power (3.4 W/cm2) in Hydrogen/Oxygen Alkaline Fuel Cells , 2019, Journal of The Electrochemical Society.

[5]  T. N. Thompson,et al.  Effect of phosphonated triazine monomer additive in disulfonated poly (arylene ether sulfone) composite membranes for proton exchange membrane fuel cells , 2019, Polymer.

[6]  Albert S. Lee,et al.  The energetics of phosphoric acid interactions reveals a new acid loss mechanism , 2019 .

[7]  Cortney R. Kreller,et al.  Intermediate temperature fuel cells via an ion-pair coordinated polymer electrolyte , 2018 .

[8]  S. Haile,et al.  Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells , 2018 .

[9]  Sungmin Park,et al.  Synthesis and Morphology Study of SEBS Triblock Copolymers Functionalized with Sulfonate and Phosphonate Groups for Proton Exchange Membrane Fuel Cells , 2018 .

[10]  Moon Jeong Park,et al.  Phosphonated Polymers with Fine-Tuned Ion Clustering Behavior: Toward Efficient Proton Conductors , 2018 .

[11]  S. Lyonnard,et al.  Phosphonic acid functionalized poly(pentafluorostyrene) as polyelectrolyte membrane for fuel cell application , 2017 .

[12]  K. Kreuer,et al.  Why do proton conducting polybenzimidazole phosphoric acid membranes perform well in high-temperature PEM fuel cells? , 2017, Physical chemistry chemical physics : PCCP.

[13]  W. Mustain,et al.  An optimised synthesis of high performance radiation-grafted anion-exchange membranes , 2016 .

[14]  S. Mehdipour‐Ataei,et al.  Phosphonated polyimides: Enhancement of proton conductivity at high temperatures and low humidity , 2016 .

[15]  Kwan-Soo Lee,et al.  An operationally flexible fuel cell based on quaternary ammonium-biphosphate ion pairs , 2016, Nature Energy.

[16]  K. Downing,et al.  Morphology and Proton Transport in Humidified Phosphonated Peptoid Block Copolymers , 2016, Macromolecules.

[17]  J. Kerres,et al.  Cross-linked PBI-based high-temperature membranes: Stability, conductivity and fuel cell performance , 2015 .

[18]  E. B. Orler,et al.  Origin of Toughness in Dispersion-Cast Nafion Membranes , 2015 .

[19]  M. Hibbs Alkaline stability of poly(phenylene)‐based anion exchange membranes with various cations , 2013 .

[20]  J. Kerres,et al.  Highly phosphonated polypentafluorostyrene: Characterization and blends with polybenzimidazole , 2013 .

[21]  B. Pollet,et al.  Optimization of gas diffusion electrode for polybenzimidazole-based high temperature proton exchange membrane fuel cell: Evaluation of polymer binders in catalyst layer , 2013 .

[22]  Waldemar Bujalski,et al.  High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) – A review , 2013 .

[23]  Tomoya Higashihara,et al.  Polymer electrolyte membranes based on polystyrenes with phosphonic acid via long alkyl side chains , 2012 .

[24]  K. Kreuer,et al.  Proton conductivity and diffusion in molten phosphinic acid (H3PO2): The last member of the phosphorus oxoacid proton conductor family , 2012 .

[25]  J. Kerres,et al.  Highly Phosphonated Polypentafluorostyrene , 2011 .

[26]  Nedal Y. Abu-Thabit,et al.  New highly phosphonated polysulfone membranes for PEM fuel cells , 2010 .

[27]  Jon Baker,et al.  A reliable and efficient first principles-based method for predicting pK(a) values. 2. Organic acids. , 2010, The journal of physical chemistry. A.

[28]  P. Pulay,et al.  A reliable and efficient first principles-based method for predicting pK(a) values. 1. Methodology. , 2010, The journal of physical chemistry. A.

[29]  K. Müllen,et al.  Phosphonic acid-containing homo-, AB and BAB block copolymers via ATRP designed for fuel cell applications , 2009 .

[30]  C. Cramer,et al.  Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. , 2009, The journal of physical chemistry. B.

[31]  J. Maier,et al.  Proton conductivity and diffusion study of molten phosphonic acid H3PO3 , 2008 .

[32]  Patric Jannasch,et al.  Polysulfones grafted with poly(vinylphosphonic acid) for highly proton conducting fuel cell membranes in the hydrated and nominally dry state , 2008 .

[33]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[34]  K. Kreuer,et al.  Poly(1,3‐phenylene‐5‐phosphonic Acid), a Fully Aromatic Polyelectrolyte with High Ion Exchange Capacity , 2007 .

[35]  Mark K. Debe,et al.  High voltage stability of nanostructured thin film catalysts for PEM fuel cells , 2006 .

[36]  G. Wegner,et al.  Synthesis, Microstructure, and Acidity of Poly(vinylphosphonic acid) , 2006 .

[37]  Kyungjung Kwon,et al.  Role of Binders in High Temperature PEMFC Electrode , 2006, ECS Transactions.

[38]  T. Navessin,et al.  Fluorinated poly(aryl ether) containing a 4-bromophenyl pendant group and its phosphonated derivative , 2006 .

[39]  J. Maier,et al.  About the Choice of the Protogenic Group in PEM Separator Materials for Intermediate Temperature, Low Humidity Operation: A Critical Comparison of Sulfonic Acid, Phosphonic Acid and Imidazole Functionalized Model Compounds , 2005 .

[40]  R. Weiss,et al.  Synthesis and characterization of poly (styrene‐co‐vinyl phosphonate) ionomers , 2004 .

[41]  Martin Head-Gordon,et al.  Analytic MP2 frequencies without fifth-order storage. Theory and application to bifurcated hydrogen bonds in the water hexamer , 1994 .

[42]  Charles A. Wilkie,et al.  Interaction of poly(methyl methacrylate) and nafions , 1991 .

[43]  Michael J. Frisch,et al.  A direct MP2 gradient method , 1990 .

[44]  Michael J. Frisch,et al.  Semi-direct algorithms for the MP2 energy and gradient , 1990 .

[45]  Svein Saebo,et al.  Avoiding the integral storage bottleneck in LCAO calculations of electron correlation , 1989 .

[46]  Michael J. Frisch,et al.  MP2 energy evaluation by direct methods , 1988 .

[47]  P. Kollman,et al.  Theoretical calculations of the hydrolysis energies of some high energy molecules. I. Phosphoric and carboxylic acid anhydrides , 1975 .

[48]  R. Hochstrasser,et al.  Isotopically selective photochemistry in molecular crystals , 1975 .

[49]  Shimshon Gottesfeld,et al.  Thin-film catalyst layers for polymer electrolyte fuel cell electrodes , 1992 .