Terrestrial free-space optical links with temporal diversity

In this work, the performance of subcarrier intensity modulated terrestrial free-space optical communication link is analysed in the presence of noise and atmospheric turbulence induced fading. To ameliorate channel fading we propose subcarrier time delay diversity (TDD) in which delayed versions of the original data are retransmitted on different subcarriers. The most efficient TDD is obtained with single re-transmission with an estimated gain of up to 4.5 dB in weak turbulence.

[1]  Jia Li,et al.  Optical Communication Using Subcarrier PSK Intensity Modulation Through Atmospheric Turbulence Channels , 2007, IEEE Trans. Commun..

[2]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[3]  Masao Nakagawa,et al.  Atmospheric optical communication system using subcarrier PSK modulation , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[4]  Tomoaki Ohtsuki,et al.  Performance analysis of atmospheric optical subcarrier multiplexing systems and atmospheric optical code division multiplexing systems , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[5]  Zabih Ghassemlooy,et al.  Performance of sub-carrier modulated Free-Space Optical communication link in negative exponential atmospheric turbulence environment , 2008, Int. J. Auton. Adapt. Commun. Syst..

[6]  Tomoaki Ohtsuki Turbo-coded atmospheric optical communication systems , 2002, 2002 IEEE International Conference on Communications. Conference Proceedings. ICC 2002 (Cat. No.02CH37333).

[7]  J. Cho,et al.  4 x 10 Gb/s terrestrial optical free space transmission over 1.2 km using an EDFA preamplifier with 100 GHz channel spacing. , 2000, Optics express.

[8]  L. Andrews,et al.  Laser Beam Scintillation with Applications , 2001 .

[9]  Heinz Willebrand,et al.  Free Space Optics: Enabling Optical Connectivity in Today's Networks , 2001 .

[10]  Hiroshi Yamamoto,et al.  Atmospheric optical subcarrier modulation systems using space-time block code , 2003, GLOBECOM '03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489).

[11]  Etty J. Lee,et al.  Part 1: optical communication over the clear turbulent atmospheric channel using diversity , 2004, IEEE Journal on Selected Areas in Communications.

[12]  Christopher C. Davis,et al.  Delayed diversity for fade resistance in optical wireless communications through turbulent media , 2004, SPIE Optics East.

[13]  M. D'Amico,et al.  Free-space optics communication systems: first results from a pilot field-trial in the surrounding area of Milan, Italy , 2003, IEEE Microwave and Wireless Components Letters.

[14]  Gerald Nykolak,et al.  Optical wireless propagation: theory vs. experiment , 2001, SPIE Optics East.

[15]  Stuart D. Milner,et al.  Characterization of time delayed diversity to mitigate fading in atmospheric turbulence channels , 2005, SPIE Optics + Photonics.

[16]  R. L. Mitchell Permanence of the Log-Normal Distribution* , 1968 .

[17]  J. Bordogna,et al.  Background noise in optical communication systems , 1970 .

[18]  L. Andrews,et al.  Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media , 2001 .

[19]  E. Leitgeb,et al.  Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel , 2008 .

[20]  R. Wood Optical detection theory for laser applications , 2003 .

[21]  L. Andrews,et al.  Laser Beam Propagation Through Random Media , 1998 .

[22]  Gregory R. Osche Optical Detection Theory for Laser Applications , 2002 .

[23]  Bane Vasic,et al.  LDPC coded OFDM over the atmospheric turbulence channel. , 2007, Optics express.

[24]  S. Karp,et al.  Communication theory for the free space optical channel Interim technical report , 1970 .

[25]  Tomoaki Ohtsuki Multiple-subcarrier modulation in optical wireless communications , 2003, IEEE Commun. Mag..

[26]  Iwao Sasase,et al.  Multiple subcarrier modulation for infrared wireless systems using punctured convolutional codes and variable amplitude block codes , 2002, Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE.

[27]  R.V. Penty,et al.  Link Reliability Improvement for Optical Wireless Communication Systems With Temporal-Domain Diversity Reception , 2008, IEEE Photonics Technology Letters.

[28]  W. Pratt Laser Communication Systems. , 1969 .

[29]  Zabih Ghassemlooy,et al.  Free space optical communication , 2007 .

[30]  J. Walkup,et al.  Statistical optics , 1986, IEEE Journal of Quantum Electronics.

[31]  Mohsen Kavehrad,et al.  BER Performance of Free-Space Optical Transmission with Spatial Diversity , 2007, IEEE Transactions on Wireless Communications.

[32]  Zabih Ghassemlooy,et al.  BPSK Subcarrier Intensity Modulated Free-Space Optical Communications in Atmospheric Turbulence , 2009, Journal of Lightwave Technology.