Numerical convergence of discrete exterior calculus on arbitrary surface meshes
暂无分享,去创建一个
[1] Mathieu Desbrun,et al. HOT: Hodge-optimized triangulations , 2011, ACM Trans. Graph..
[2] M. Shashkov,et al. Adjoint operators for the natural discretizations of the divergence gradient and curl on logically rectangular grids , 1997 .
[3] Xiaoye S. Li,et al. SuperLU Users'' Guide , 1997 .
[4] Chandrajit L. Bajaj,et al. Dual formulations of mixed finite element methods with applications , 2010, Comput. Aided Des..
[5] Keenan Crane,et al. Energy-preserving integrators for fluid animation , 2009, ACM Trans. Graph..
[6] Anil N. Hirani,et al. Comparison of discrete Hodge star operators for surfaces , 2016, Comput. Aided Des..
[7] Anil N. Hirani,et al. Corrigendum to "Delaunay Hodge star" [Comput. Aided Des. 45 (2013) 540-544] , 2018, Comput. Aided Des..
[8] James Demmel,et al. A Supernodal Approach to Sparse Partial Pivoting , 1999, SIAM J. Matrix Anal. Appl..
[9] R. A. Nicolaides,et al. Covolume techniques for anisotropic media , 1992 .
[10] M. Shashkov,et al. Natural discretizations for the divergence, gradient, and curl on logically rectangular grids☆ , 1997 .
[11] Michael K. Adams,et al. ( IL ) , 2012 .
[12] Yiying Tong,et al. Stable, circulation-preserving, simplicial fluids , 2006, SIGGRAPH Courses.
[13] J. Cavendish,et al. The dual variable method for solving fluid flow difference equations on Delaunay triangulations , 1991 .
[14] T. A. Porsching,et al. ON A NETWORK METHOD FOR UNSTEADY INCOMPRESSIBLE FLUID FLOW ON TRIANGULAR GRIDS , 1992 .
[15] B. Perot. Conservation Properties of Unstructured Staggered Mesh Schemes , 2000 .
[16] Mark Meyer,et al. Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.
[17] Keenan Crane,et al. Energy-preserving integrators for fluid animation , 2009, SIGGRAPH 2009.
[18] J. Marsden,et al. Groups of diffeomorphisms and the motion of an incompressible fluid , 1970 .
[19] R. A. Nicolaides,et al. Discretization of incompressible vorticity–velocity equations on triangular meshes , 1990 .
[20] Anil N. Hirani,et al. Discrete exterior calculus discretization of incompressible Navier-Stokes equations over surface simplicial meshes , 2015, J. Comput. Phys..
[21] L. Kettunen,et al. Geometric interpretation of discrete approaches to solving magnetostatic problems , 2004, IEEE Transactions on Magnetics.
[22] J. Cavendish,et al. A complementary volume approach for modelling three‐dimensional Navier—Stokes equations using dual delaunay/voronoi tessellations , 1994 .
[23] D. Arnold,et al. Finite element exterior calculus: From hodge theory to numerical stability , 2009, 0906.4325.
[24] B. Auchmann,et al. A geometrically defined discrete hodge operator on simplicial cells , 2006, IEEE Transactions on Magnetics.
[25] R. Nicolaides. Direct discretization of planar div-curl problems , 1992 .
[26] Anil N. Hirani,et al. Delaunay Hodge star , 2012, Comput. Aided Des..
[27] Anil N. Hirani,et al. Discrete exterior calculus , 2005, math/0508341.
[28] A. Bossavit. Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements , 1997 .
[29] Anil N. Hirani,et al. Numerical Method for Darcy Flow Derived Using Discrete Exterior Calculus , 2008, ArXiv.
[30] D. Schmidt,et al. Accuracy and conservation properties of a three-dimensional unstructured staggered mesh scheme for fluid dynamics , 2002 .
[31] R. A. Nicolaides,et al. Covolume Discretization of Differential Forms , 2006 .
[32] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[33] James C. Cavendish,et al. SOLUTION OF INCOMPRESSIBLE NAVIER‐STOKES EQUATIONS ON UNSTRUCTURED GRIDS USING DUAL TESSELLATIONS , 1992 .
[34] R. A. Nicolaides,et al. Flow discretization by complementary volume techniques , 1989 .