Synthetic Biology Tools to Engineer Microbial Communities for Biotechnology

Microbial consortia have been used in biotechnology processes, including fermentation, waste treatment, and agriculture, for millennia. Today, synthetic biologists are increasingly engineering microbial consortia for diverse applications, including the bioproduction of medicines, biofuels, and biomaterials from inexpensive carbon sources. An improved understanding of natural microbial ecosystems, and the development of new tools to construct synthetic consortia and program their behaviors, will vastly expand the functions that can be performed by communities of interacting microorganisms. Here, we review recent advancements in synthetic biology tools and approaches to engineer synthetic microbial consortia, discuss ongoing and emerging efforts to apply consortia for various biotechnological applications, and suggest future applications.

[1]  Hans C. Bernstein,et al.  Microbial Consortia Engineering for Cellular Factories: in vitro to in silico systems , 2012, Computational and structural biotechnology journal.

[2]  Jay D Keasling,et al.  Production of isoprenoid pharmaceuticals by engineered microbes , 2006, Nature chemical biology.

[3]  Jay D. Keasling,et al.  Directed Evolution of AraC for Improved Compatibility of Arabinose- and Lactose-Inducible Promoters , 2007, Applied and Environmental Microbiology.

[4]  K. Zengler,et al.  The social network of microorganisms — how auxotrophies shape complex communities , 2018, Nature Reviews Microbiology.

[5]  J. Collins,et al.  CRISPR-based genomic tools for the manipulation of genetically intractable microorganisms , 2018, Nature Reviews Microbiology.

[6]  Y. Wang,et al.  CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts , 2013, Proceedings of the National Academy of Sciences.

[7]  Jeff Hasty,et al.  Quorum Sensing Communication Modules for Microbial Consortia. , 2016, ACS synthetic biology.

[8]  James J Collins,et al.  Syntrophic exchange in synthetic microbial communities , 2014, Proceedings of the National Academy of Sciences.

[9]  Stefan Bruder,et al.  Engineering of yeast hexose transporters to transport d-xylose without inhibition by d-glucose , 2014, Proceedings of the National Academy of Sciences.

[10]  A. Boetius,et al.  Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria , 2015, Nature.

[11]  T. Tan,et al.  Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production , 2012, Proceedings of the National Academy of Sciences.

[12]  M. De Mey,et al.  A sigma factor toolbox for orthogonal gene expression in Escherichia coli , 2018, Nucleic acids research.

[13]  Wenying Shou,et al.  Synthetic cooperation in engineered yeast populations , 2007, Proceedings of the National Academy of Sciences.

[14]  Gürol M. Süel,et al.  Ion channels enable electrical communication in bacterial communities , 2015, Nature.

[15]  Christian R. Boehm,et al.  Programmed hierarchical patterning of bacterial populations , 2017, Nature Communications.

[16]  Domitilla Del Vecchio,et al.  Control theory meets synthetic biology , 2016, Journal of The Royal Society Interface.

[17]  Tom Ellis,et al.  DNA assembly for synthetic biology: from parts to pathways and beyond. , 2011, Integrative biology : quantitative biosciences from nano to macro.

[18]  Paul I. Barton,et al.  Design of Microbial Consortia for Industrial Biotechnology , 2014 .

[19]  Pamela A. Silver,et al.  Engineering bacteria for diagnostic and therapeutic applications , 2018, Nature Reviews Microbiology.

[20]  Qian Ma,et al.  Reorganization of a synthetic microbial consortium for one-step vitamin C fermentation , 2016, Microbial Cell Factories.

[21]  G. Stephanopoulos,et al.  Distributing a metabolic pathway among a microbial consortium enhances production of natural products , 2015, Nature Biotechnology.

[22]  Matthew R Chapman,et al.  Curli biogenesis and function. , 2006, Annual review of microbiology.

[23]  Harris H. Wang,et al.  An Economic Framework of Microbial Trade , 2015, PloS one.

[24]  Garima Goyal,et al.  Surface Display of a Functional Minicellulosome by Intracellular Complementation Using a Synthetic Yeast Consortium and Its Application to Cellulose Hydrolysis and Ethanol Production , 2010, Applied and Environmental Microbiology.

[25]  J. Keasling,et al.  Engineering Cellular Metabolism , 2016, Cell.

[26]  Harris H. Wang,et al.  Engineering ecosystems and synthetic ecologies. , 2012, Molecular bioSystems.

[27]  K. Sauer,et al.  Sticky Situations: Key Components That Control Bacterial Surface Attachment , 2012, Journal of bacteriology.

[28]  Manjunath Hegde,et al.  Synthetic quorum-sensing circuit to control consortial biofilm formation and dispersal in a microfluidic device , 2012, Nature Communications.

[29]  Bonnie L. Bassler,et al.  Bacterially Speaking , 2006, Cell.

[30]  Tingrui Pan,et al.  Synthetic microbial consortia enable rapid assembly of pure translation machinery. , 2018, Nature chemical biology.

[31]  S. Panke,et al.  Optimization of a whole-cell biocatalyst by employing genetically encoded product sensors inside nanolitre reactors. , 2015, Nature chemistry.

[32]  William E Bentley,et al.  Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models , 2017, Nature Communications.

[33]  Daniel C. Ducat,et al.  Synthetic photosynthetic consortia define interactions leading to robustness and photoproduction , 2016, bioRxiv.

[34]  F. Sato,et al.  Microbial production of plant benzylisoquinoline alkaloids , 2008, Proceedings of the National Academy of Sciences.

[35]  P. Silver,et al.  Inducible Cooperation in a Synthetic Gut Bacterial Consortium Introduces Population Balance and Stability , 2018, bioRxiv.

[36]  David K. Karig,et al.  Metabolic division of labor in microbial systems , 2018, Proceedings of the National Academy of Sciences.

[37]  Mario di Bernardo,et al.  In-Silico Analysis and Implementation of a Multicellular Feedback Control Strategy in a Synthetic Bacterial Consortium. , 2017, ACS synthetic biology.

[38]  H. Huber,et al.  Microbial syntrophy: interaction for the common good. , 2013, FEMS microbiology reviews.

[39]  S. Basu,et al.  A synthetic multicellular system for programmed pattern formation , 2005, Nature.

[40]  Mat E. Barnet,et al.  A synthetic Escherichia coli predator–prey ecosystem , 2008, Molecular systems biology.

[41]  Elin E. Lilja,et al.  Metabolic specialization and the assembly of microbial communities , 2012, The ISME Journal.

[42]  Ingmar H. Riedel-Kruse,et al.  A Synthetic Bacterial Cell-Cell Adhesion Toolbox for Programming Multicellular Morphologies and Patterns , 2018, Cell.

[43]  P. Schultz,et al.  Engineering yeast endosymbionts as a step toward the evolution of mitochondria , 2018, Proceedings of the National Academy of Sciences.

[44]  Frances H. Arnold,et al.  Self-Organization, Layered Structure, and Aggregation Enhance Persistence of a Synthetic Biofilm Consortium , 2011, PloS one.

[45]  Gemma Reguera,et al.  When microbial conversations get physical. , 2011, Trends in microbiology.

[46]  Reed L. Taffs,et al.  In silico approaches to study mass and energy flows in microbial consortia: a syntrophic case study , 2009, BMC Systems Biology.

[47]  Didier L. Baho,et al.  Fundamentals of Microbial Community Resistance and Resilience , 2012, Front. Microbio..

[48]  Qipeng Yuan,et al.  Naringenin‐responsive riboswitch‐based fluorescent biosensor module for Escherichia coli co‐cultures , 2017, Biotechnology and bioengineering.

[49]  R. Knight,et al.  Microbiota and Host Nutrition across Plant and Animal Kingdoms. , 2015, Cell host & microbe.

[50]  Mattheos A. G. Koffas,et al.  Complete Biosynthesis of Anthocyanins Using E. coli Polycultures , 2017, mBio.

[51]  Timothy J. Hanly,et al.  Dynamic flux balance analysis for synthetic microbial communities. , 2014, IET systems biology.

[52]  Matthew R. Bennett,et al.  Emergent genetic oscillations in a synthetic microbial consortium , 2015, Science.

[53]  Blake A. Simmons,et al.  Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli , 2011, Proceedings of the National Academy of Sciences.

[54]  P. Silver,et al.  Emergent cooperation in microbial metabolism , 2010, Molecular systems biology.

[55]  J. Bähler,et al.  Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation , 2008, Nature Reviews Genetics.

[56]  Alfonso Rodríguez-Patón,et al.  A new improved and extended version of the multicell bacterial simulator gro , 2016, bioRxiv.

[57]  Lei S. Qi,et al.  CRISPR/Cas9 in Genome Editing and Beyond. , 2016, Annual review of biochemistry.

[58]  S. Agathos,et al.  Deciphering microbial community robustness through synthetic ecology and molecular systems synecology. , 2015, Current opinion in biotechnology.

[59]  Christopher A. Voigt,et al.  Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’ , 2011, Nature.

[60]  Jeffrey D Orth,et al.  What is flux balance analysis? , 2010, Nature Biotechnology.

[61]  R. Weiss,et al.  Artificial cell-cell communication in yeast Saccharomyces cerevisiae using signaling elements from Arabidopsis thaliana , 2005, Nature Biotechnology.

[62]  Yinan Wang,et al.  Study of bacterial adhesion on different glycopolymer surfaces by quartz crystal microbalance with dissipation. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[63]  J. Mattick,et al.  Extracellular DNA required for bacterial biofilm formation. , 2002, Science.

[64]  Martin Fussenegger,et al.  Synthetic ecosystems based on airborne inter- and intrakingdom communication , 2007, Proceedings of the National Academy of Sciences.

[65]  Sahand Hormoz,et al.  Metabolic interactions between dynamic bacterial subpopulations , 2017, bioRxiv.

[66]  Christopher A. Voigt,et al.  Synthesis of methyl halides from biomass using engineered microbes. , 2009, Journal of the American Chemical Society.

[67]  Hans C. Bernstein,et al.  Gazing into the crystal ball : predicting the behavior of microbial consortia , 2016 .

[68]  Adriano Bonforti,et al.  A Synthetic Multicellular Memory Device. , 2016, ACS synthetic biology.

[69]  Yinjie J. Tang,et al.  Metabolic Burden: Cornerstones in Synthetic Biology and Metabolic Engineering Applications. , 2016, Trends in biotechnology.

[70]  Ingmar H. Riedel-Kruse,et al.  Biofilm Lithography enables high-resolution cell patterning via optogenetic adhesin expression , 2018, Proceedings of the National Academy of Sciences.

[71]  J. P. Grime,et al.  Biodiversity and Ecosystem Functioning: Current Knowledge and Future Challenges , 2001, Science.

[72]  James C Liao,et al.  Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass , 2013, Proceedings of the National Academy of Sciences.

[73]  Rodrigo Ledesma-Amaro,et al.  Metabolic Engineering for Expanding the Substrate Range of Yarrowia lipolytica. , 2016, Trends in biotechnology.

[74]  Robert J Citorik,et al.  Synthesis and patterning of tunable multiscale materials with engineered cells , 2014, Nature materials.

[75]  Ying-jin Yuan,et al.  An Environment-Sensitive Synthetic Microbial Ecosystem , 2010, PloS one.

[76]  Leopold N. Green,et al.  Control of bacterial population density with population feedback and molecular sequestration , 2017, bioRxiv.

[77]  Adam B Fisher,et al.  Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria , 2018, Nature Biotechnology.

[78]  Bernhard O. Palsson,et al.  A road map for the development of community systems (CoSy) biology , 2012, Nature Reviews Microbiology.

[79]  Ahmad S. Khalil,et al.  Synthetic biology: applications come of age , 2010, Nature Reviews Genetics.

[80]  Qipeng Yuan,et al.  Metabolic engineering of Escherichia coli for microbial synthesis of monolignols. , 2017, Metabolic engineering.

[81]  C. Collins,et al.  Peptide‐based communication system enables Escherichia coli to Bacillus megaterium interspecies signaling , 2013, Biotechnology and bioengineering.

[82]  Christopher A. Voigt,et al.  Principles of genetic circuit design , 2014, Nature Methods.

[83]  Taiyao Wang,et al.  Designing Metabolic Division of Labor in Microbial Communities , 2018, mSystems.

[84]  Josephine R. Chandler,et al.  Bacterial Quorum Sensing and Microbial Community Interactions , 2018, mBio.

[85]  Javier Macía,et al.  Distributed biological computation with multicellular engineered networks , 2011, Nature.

[86]  Audrey Bihouée,et al.  Structure and co-occurrence patterns in microbial communities under acute environmental stress reveal ecological factors fostering resilience , 2018, Scientific Reports.

[87]  Gunnar Rätsch,et al.  Ecological Modeling from Time-Series Inference: Insight into Dynamics and Stability of Intestinal Microbiota , 2013, PLoS Comput. Biol..

[88]  Peer Bork,et al.  Metabolic dependencies drive species co-occurrence in diverse microbial communities , 2015, Proceedings of the National Academy of Sciences.

[89]  L. Tsimring,et al.  A stabilized microbial ecosystem of self-limiting bacteria using synthetic quorum-regulated lysis , 2017, Nature Microbiology.

[90]  J. Raes,et al.  Microbial interactions: from networks to models , 2012, Nature Reviews Microbiology.

[91]  James J Collins,et al.  Designing microbial consortia with defined social interactions , 2018, Nature Chemical Biology.

[92]  Mario di Bernardo,et al.  BSim 2.0: An Advanced Agent-Based Cell Simulator. , 2017, ACS synthetic biology.

[93]  Ehud Banin,et al.  Multi-species biofilms: living with friendly neighbors. , 2012, FEMS microbiology reviews.

[94]  M. Keller,et al.  Self-establishing communities enable cooperative metabolite exchange in a eukaryote , 2015, eLife.

[95]  Hans C. Bernstein,et al.  Synthetic Escherichia coli consortia engineered for syntrophy demonstrate enhanced biomass productivity. , 2012, Journal of biotechnology.

[96]  Paul Stoodley,et al.  Bacterial biofilms: from the Natural environment to infectious diseases , 2004, Nature Reviews Microbiology.

[97]  G. Stephanopoulos,et al.  Engineering Escherichia coli coculture systems for the production of biochemical products , 2015, Proceedings of the National Academy of Sciences.

[98]  Christopher A. Voigt,et al.  Synthetic biology to access and expand nature's chemical diversity , 2016, Nature Reviews Microbiology.

[99]  J. Pronk,et al.  Fermentation of glucose-xylose-arabinose mixtures by a synthetic consortium of single-sugar-fermenting Saccharomyces cerevisiae strains. , 2018, FEMS yeast research.

[100]  Daniel Weindl,et al.  How metabolites modulate metabolic flux. , 2015, Current opinion in biotechnology.

[101]  Javier Macía,et al.  Implementation of Complex Biological Logic Circuits Using Spatially Distributed Multicellular Consortia , 2016, PLoS Comput. Biol..

[102]  C. Huttenhower,et al.  Sequencing and beyond: integrating molecular 'omics' for microbial community profiling , 2015, Nature Reviews Microbiology.

[103]  F. Arnold,et al.  Engineering microbial consortia: a new frontier in synthetic biology. , 2008, Trends in biotechnology.

[104]  G. Prosser,et al.  Metabolomic strategies for the identification of new enzyme functions and metabolic pathways , 2014, EMBO reports.

[105]  C. Kost,et al.  Ecology and evolution of metabolic cross-feeding interactions in bacteria. , 2018, Natural product reports.

[106]  Peter Jackson,et al.  Rewriting yeast central carbon metabolism for industrial isoprenoid production , 2016, Nature.

[107]  Nicolas Kylilis,et al.  Tools for engineering coordinated system behaviour in synthetic microbial consortia , 2017, Nature Communications.

[108]  Mark A Eiteman,et al.  Simultaneous utilization of glucose, xylose and arabinose in the presence of acetate by a consortium of Escherichia coli strains , 2012, Microbial Cell Factories.

[109]  J. Keasling,et al.  A constructed microbial consortium for biodegradation of the organophosphorus insecticide parathion , 2003, Applied Microbiology and Biotechnology.

[110]  Tomasz Blazejewski,et al.  Principles for designing synthetic microbial communities. , 2016, Current opinion in microbiology.

[111]  Faisal A. Aldaye,et al.  A structurally tunable DNA-based extracellular matrix. , 2010, Journal of the American Chemical Society.

[112]  C. Harwood,et al.  Extracellular Self-Assembly of Functional and Tunable Protein Conjugates from Bacillus subtilis. , 2017, ACS synthetic biology.

[113]  Qiuming Yao,et al.  Diverse and divergent protein post-translational modifications in two growth stages of a natural microbial community , 2014, Nature Communications.

[114]  B. Bassler,et al.  Bacterial quorum-sensing network architectures. , 2009, Annual review of genetics.

[115]  Kristy M. Hawkins,et al.  Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae. , 2008, Nature chemical biology.