IMAGING AN EVENT HORIZON: MITIGATION OF SCATTERING TOWARD SAGITTARIUS A*

The image of the emission surrounding the black hole in the center of the Milky Way is predicted to exhibit the imprint of general relativistic (GR) effects, including the existence of a shadow feature and a photon ring of diameter ∼50 μas. Structure on these scales can be resolved by millimeter-wavelength very long baseline interferometry. However, strong-field GR features of interest will be blurred at λ ⩾ 1.3 mm due to scattering by interstellar electrons. The scattering properties are well understood over most of the relevant range of baseline lengths, suggesting that the scattering may be (mostly) invertible. We simulate observations of a model image of Sgr A* and demonstrate that the effects of scattering can indeed be mitigated by correcting the visibilities before reconstructing the image. This technique is also applicable to Sgr A* at longer wavelengths.

[1]  R. Jennison A Phase Sensitive Interferometer Technique for the Measurement of the Fourier Transforms of Spatial Brightness Distributions of Small Angular Extent , 1958 .

[2]  A. Niell,et al.  Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre , 2008, Nature.

[3]  B. J. Rickett,et al.  Radio propagation through the turbulent interstellar plasma. , 1990 .

[4]  D. Frail,et al.  Interstellar scattering toward the Galactic center as probed OH/IR stars , 1992 .

[5]  R. Genzel,et al.  MONITORING STELLAR ORBITS AROUND THE MASSIVE BLACK HOLE IN THE GALACTIC CENTER , 2008, 0810.4674.

[6]  T. Johannsen,et al.  TESTING THE NO-HAIR THEOREM WITH OBSERVATIONS IN THE ELECTROMAGNETIC SPECTRUM. I. PROPERTIES OF A QUASI-KERR SPACETIME , 2010, 1003.3415.

[7]  E. Greisen,et al.  APERTURE SYNTHESIS OBSERVATIONS OF THE NEARBY SPIRAL NGC 6503: MODELING THE THIN AND THICK H i DISKS , 2009, 0902.0989.

[8]  M. Johnson,et al.  DISCOVERY OF SUBSTRUCTURE IN THE SCATTER-BROADENED IMAGE OF SGR A* , 2014, 1409.0530.

[9]  V. I. Tatarskii The effects of the turbulent atmosphere on wave propagation , 1971 .

[10]  P. K. Leung,et al.  RADIATIVE MODELS OF SGR A* FROM GRMHD SIMULATIONS , 2009, 0909.5431.

[11]  H. Falcke,et al.  The Intrinsic Size of Sagittarius A* from 0.35 to 6 cm , 2006, astro-ph/0608004.

[12]  Jessica R. Lu,et al.  Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits , 2008, 0808.2870.

[13]  W. J. Tango,et al.  Very High Angular Resolution Imaging , 1994 .

[14]  Mareki Honma,et al.  High-Angular-Resolution and High-Sensitivity Science Enabled by Beamformed ALMA , 2013, 1309.3519.

[15]  E.E. Pissaloux,et al.  Image Processing , 1994, Proceedings. Second Euromicro Workshop on Parallel and Distributed Processing.

[16]  H. Kobayashi,et al.  Multi-Epoch VERA Observations of Sagittarius A*. I. Images and Structural Variability , 2013, 1308.6657.

[17]  A magnetized torus for modeling Sagittarius A∗ millimeter images and spectra , 2014, 1406.0353.

[18]  Intrinsic Size of Sagittarius A*: 72 Schwarzschild Radii , 1998, astro-ph/9809222.

[19]  Alan E. E. Rogers,et al.  The structure of radio sources 3C 273B and 3C 84 deduced from the "closure" phases and visibility amplitudes observed with three-element interferometers. , 1974 .

[20]  P. K. Leung,et al.  Simulating the emission and outflows from accretion discs , 2007, astro-ph/0701778.

[21]  M. Reid,et al.  Limits on the Position Wander of Sgr A* , 2008, 0801.4505.

[22]  Canadian Institute for Theoretical Astrophysics,et al.  DETECTING FLARING STRUCTURES IN SAGITTARIUS A* WITH HIGH-FREQUENCY VLBI , 2008, 0809.3424.

[23]  Adam Deller,et al.  THE ANGULAR BROADENING OF THE GALACTIC CENTER PULSAR SGR J1745-29: A NEW CONSTRAINT ON THE SCATTERING MEDIUM , 2013, 1309.4672.

[24]  Harvard University,et al.  Imaging optically-thin hotspots near the black hole horizon of Sgr A* at radio and near-infrared wavelengths , 2005, astro-ph/0509237.

[25]  Alan E. E. Rogers,et al.  DETECTING CHANGING POLARIZATION STRUCTURES IN SAGITTARIUS A* WITH HIGH FREQUENCY VLBI , 2009 .

[26]  Dwingeloo,et al.  Jet-lag in Sagittarius A*: what size and timing measurements tell us about the central black hole in the Milky Way , 2009, 0901.3723.

[27]  Cfa,et al.  LOCALIZING SAGITTARIUS A* AND M87 ON MICROARCSECOND SCALES WITH MILLIMETER VERY LONG BASELINE INTERFEROMETRY , 2011, 1104.3146.

[28]  Canada.,et al.  IMAGING THE SUPERMASSIVE BLACK HOLE SHADOW AND JET BASE OF M87 WITH THE EVENT HORIZON TELESCOPE , 2014, 1404.7095.

[29]  Detection of the Intrinsic Size of Sagittarius A* Through Closure Amplitude Imaging , 2004, Science.

[30]  M. Wright,et al.  1.3 mm WAVELENGTH VLBI OF SAGITTARIUS A*: DETECTION OF TIME-VARIABLE EMISSION ON EVENT HORIZON SCALES , 2010, 1011.2472.

[31]  R. Narayan,et al.  The shape of a scatter-broadened image. II: Interferometric visibilities , 1989 .

[32]  T. Johannsen,et al.  TESTING THE NO-HAIR THEOREM WITH OBSERVATIONS IN THE ELECTROMAGNETIC SPECTRUM. II. BLACK HOLE IMAGES , 2010, 1005.1931.

[33]  E. Agol,et al.  MILLIMETER FLARES AND VLBI VISIBILITIES FROM RELATIVISTIC SIMULATIONS OF MAGNETIZED ACCRETION ONTO THE GALACTIC CENTER BLACK HOLE , 2009, 0909.0267.

[34]  Avery E. Broderick,et al.  Imaging bright-spots in the accretion flow near the black hole horizon of Sgr A* , 2005, astro-ph/0506433.

[35]  R. Narayan,et al.  The shape of a scatter-broadened image – I. Numerical simulations and physical principles , 1989 .

[36]  B. Rickett,et al.  On the Theory of Pulse Propagation and Two-Frequency Field Statistics in Irregular Interstellar Plasmas , 1998 .

[37]  C. Gwinn,et al.  The Galactic center radio source shines below the Compton limit , 1991 .

[38]  S. Pizer,et al.  The Image Processing Handbook , 1994 .

[39]  Norbert Wiener,et al.  Extrapolation, Interpolation, and Smoothing of Stationary Time Series, with Engineering Applications , 1949 .

[40]  P. Chris Fragile,et al.  THE SUBMILLIMETER BUMP IN Sgr A* FROM RELATIVISTIC MHD SIMULATIONS , 2010, 1005.4062.

[41]  Harvard,et al.  EVIDENCE FOR LOW BLACK HOLE SPIN AND PHYSICALLY MOTIVATED ACCRETION MODELS FROM MILLIMETER-VLBI OBSERVATIONS OF SAGITTARIUS A* , 2010, 1011.2770.

[42]  S. Sridhar,et al.  Toward a theory of interstellar turbulence. 2. Strong Alfvenic turbulence , 1994 .

[43]  John W. Armstrong,et al.  Electron Density Power Spectrum in the Local Interstellar Medium , 1995 .

[44]  B. Dewitt,et al.  Black holes (Les astres occlus) , 1973 .

[45]  C. Gwinn,et al.  Evidence for an inner scale to the density turbulence in the interstellar medium , 1990 .

[46]  R. Genzel,et al.  THE ORBIT OF THE STAR S2 AROUND SGR A* FROM VERY LARGE TELESCOPE AND KECK DATA , 2009, 0910.3069.

[47]  D. P. Woody,et al.  Structure of Sagittarius A* at 86 GHz using VLBI Closure Quantities , 2001 .

[48]  Allen Munro,et al.  6 – Neural information processing , 1977 .

[49]  Cedric Nishan Canagarajah,et al.  Structural similarity-based object tracking in multimodality surveillance videos , 2009, Machine Vision and Applications.

[50]  Sven Koenig,et al.  Multiwavelength VLBI observations of Sagittarius A , 2010, 1010.1287.