Self-consistent scattering model of carrier dynamics in GaAs-AlGaAs terahertz quantum-cascade lasers

Intersubband electron scattering transport in terahertz GaAs-AlGaAs quantum cascade lasers is analyzed, using a full 13-level self-consistent rate equation model. The approach includes all relevant scattering mechanisms between injector-collector and active region states in the cascade structures. Employing an energy balance equation which includes the influence of both electron longitudinal optical phonon and electron-electron scattering, the method also enables evaluation of the average electron temperature of the nonequilibrium carrier distributions in the device. The electron temperature is found to give a strong influence on the output characteristics, particularly at very low temperatures. The threshold currents and electric field-current density characteristics are in very good agreement with experiment, implying that the model has a strong predictive capability.

[1]  Federico Capasso,et al.  Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths , 2001 .

[2]  Mattias Beck,et al.  Far-infrared (λ=88 μm) electroluminescence in a quantum cascade structure , 1998 .

[3]  Paul Harrison,et al.  THE NATURE OF THE ELECTRON DISTRIBUTION FUNCTIONS IN QUANTUM CASCADE LASERS , 1999 .

[4]  Paul Harrison,et al.  Influence of leakage current on temperature performance of GaAs/AlGaAs quantum cascade lasers , 2002 .

[5]  J. Faist,et al.  Quantum Cascade Laser , 1994, Science.

[6]  R C Iotti,et al.  Nature of charge transport in quantum-cascade lasers. , 2001, Physical review letters.

[7]  Federico Capasso,et al.  Ultra-broadband semiconductor laser , 2002, Nature.

[8]  Paul Harrison,et al.  Electron temperature and mechanisms of hot carrier generation in quantum cascade lasers , 2002 .

[9]  David A. Ritchie,et al.  Low-threshold terahertz quantum-cascade lasers , 2002 .

[10]  K. West,et al.  Terahertz electroluminescence from superlattice quantum cascade structures , 2002 .

[11]  Paul Harrison,et al.  Self-consistent solutions to the intersubband rate equations in quantum cascade lasers: Analysis of a GaAs/AlxGa1-xAs device , 2001 .

[12]  P. Harrison Quantum wells, wires, and dots : theoretical and computational physics , 2016 .

[13]  F. Capasso,et al.  Quantum cascade lasers with double metal-semiconductor waveguide resonators , 2002 .

[14]  Design and simulation of terahertz quantum cascade lasers , 2001, cond-mat/0110144.

[15]  R. Soref,et al.  Population-inversion and gain estimates for a semiconductor TASER , 2001 .

[16]  Werner Schrenk,et al.  Long wavelength (15 and 23 μm) GaAs/AlGaAs quantum cascade lasers , 2002 .

[17]  Paul Harrison,et al.  Self-consistent scattering theory of transport and output characteristics of quantum cascade lasers , 2002 .

[18]  E. Linfield,et al.  High-intensity interminiband terahertz emission from chirped superlattices , 2002 .

[19]  M. Beck,et al.  Bound-to-continuum and two-phonon resonance, quantum-cascade lasers for high duty cycle, high-temperature operation , 2002 .

[20]  F. Capasso,et al.  Recent progress in quantum cascade lasers and applications , 2001 .

[21]  Carlo Sirtori,et al.  GaAs-AlGaAs quantum cascade lasers: physics, technology, and prospects , 2002 .

[22]  E. Linfield,et al.  Terahertz semiconductor-heterostructure laser , 2002, Nature.