2D molten salt strategy for preparing large-sized MoS2/C sheets with self-adaptive structural deformation for K-ion storage

[1]  Shulan Wang,et al.  Molten-salt synthesis of crystalline C3N4/C nanosheet with high sodium storage capability , 2021 .

[2]  Yanjie Hu,et al.  Heterogeneous MoSe2/Nitrogen‐Doped‐Carbon Nanoarrays: Engineering Atomic Interface for Potassium‐Ion Storage , 2021, Advanced Functional Materials.

[3]  Wei Weng,et al.  Versatile Preparation of Mesoporous Single‐Layered Transition‐Metal Sulfide/Carbon Composites for Enhanced Sodium Storage , 2021, Advanced materials.

[4]  Jin Zhao,et al.  Bidirectional and reversible tuning of the interlayer spacing of two-dimensional materials , 2021, Nature Communications.

[5]  Jing Mao,et al.  MoS2/SnS@C hollow hierarchical nanotubes as superior performance anode for sodium-ion batteries , 2021, Nano Energy.

[6]  Yan Yu,et al.  Harnessing the Volume Expansion of MoS3 Anode by Structure Engineering to Achieve High Performance Beyond Lithium‐Based Rechargeable Batteries , 2021, Advanced materials.

[7]  Hongsen Li,et al.  Fast potassium storage in porous CoV2O6 nanosphere@graphene oxide towards high-performance potassium-ion capacitors , 2021 .

[8]  Shulan Wang,et al.  Quantum dot heterostructure with directional charge transfer channels for high sodium storage , 2021 .

[9]  Haiquan Xie,et al.  One-step construction of S-scheme heterojunctions of N-doped MoS2 and S-doped g-C3N4 for enhanced photocatalytic hydrogen evolution , 2021 .

[10]  Yitai Qian,et al.  2D interspace confined growth of ultrathin MoS2-intercalated graphite hetero-layers for high-rate Li/K storage , 2020, Nano Research.

[11]  Weidong He,et al.  Boosting sodium storage performance of Mo2C via nitrogen-doped carbon sphere encapsulation and rGO wrapping , 2020 .

[12]  Yanjie Hu,et al.  Multivalence-Ion Intercalation Enables Ultrahigh 1T Phase MoS 2 Nanoflowers to Enhanced Sodium-Storage Performance , 2020 .

[13]  Ping Nie,et al.  Hierarchical N-doped carbon nanosheets submicrospheres enable superior electrochemical properties for potassium ion capacitors , 2020 .

[14]  Chun‐Sing Lee,et al.  Catalyzed Kinetic Growth in Two-Dimensional MoS2. , 2020, Journal of the American Chemical Society.

[15]  Fenghua Liu,et al.  Carbon Nanobowls Filled with MoS2 Nanosheets as Electrode Materials for Supercapacitors , 2020 .

[16]  Chunzhong Li,et al.  Edge-enriched MoS2@C/rGO film as self-standing anodes for high-capacity and long-life lithium-ion batteries , 2020, Science China Materials.

[17]  Yuezhan Feng,et al.  S-Doped Carbon-Coated FeS2/C@C Nanorods for Potassium Storage , 2020, Acta Metallurgica Sinica (English Letters).

[18]  H. Hong,et al.  MoS2/N-doped graphene aerogles composite anode for high performance sodium/potassium ion batteries , 2020 .

[19]  A. Pan,et al.  High-performance optoelectronic devices based on van der Waals vertical MoS2/MoSe2 heterostructures , 2020, Nano Research.

[20]  Kun Zhang,et al.  A honeycomb-like nitrogen-doped carbon as high-performance anode for potassium-ion batteries , 2020 .

[21]  Yi Zhang,et al.  Toward heat-tolerant potassium batteries based on pyrolyzed selenium disulfide/polyacrylonitrile positive electrode and gel polymer electrolyte , 2020, Journal of Materials Chemistry A.

[22]  Yanjie Hu,et al.  Confining MoS2 nanocrystals in MOF-derived carbon for high performance lithium and potassium storage , 2020 .

[23]  F. Ciucci,et al.  Dual-phase MoS2 as a high-performance sodium-ion battery anode , 2020 .

[24]  Huanlei Wang,et al.  Controlled Design of Well‐Dispersed Ultrathin MoS2 Nanosheets inside Hollow Carbon Skeleton: Toward Fast Potassium Storage by Constructing Spacious “Houses” for K Ions , 2020, Advanced Functional Materials.

[25]  Zhiliang Liu,et al.  Low-temperature synthesis of honeycomb CuP2@C in ZnCl2 molten salt for high-performance lithium ion batteries. , 2019, Angewandte Chemie.

[26]  C. Li,et al.  Designing 3D Biomorphic Nitrogen‐Doped MoSe2/Graphene Composites toward High‐Performance Potassium‐Ion Capacitors , 2019, Advanced Functional Materials.

[27]  W. Chu,et al.  Encapsulating Carbon‐Coated MoS2 Nanosheets within a Nitrogen‐Doped Graphene Network for High‐Performance Potassium‐Ion Storage , 2019, Advanced Materials Interfaces.

[28]  Daping Qiu,et al.  Kinetics Enhanced Nitrogen‐Doped Hierarchical Porous Hollow Carbon Spheres Boosting Advanced Potassium‐Ion Hybrid Capacitors , 2019, Advanced Functional Materials.

[29]  Dongjiang Yang,et al.  3D Sulfur and Nitrogen Codoped Carbon Nanofiber Aerogels with Optimized Electronic Structure and Enlarged Interlayer Spacing Boost Potassium-Ion Storage. , 2019, Small.

[30]  Xiaogang Zhang,et al.  Engineering Ultrathin MoS 2 Nanosheets Anchored on N‐Doped Carbon Microspheres with Pseudocapacitive Properties for High‐Performance Lithium‐Ion Capacitors , 2019, Small Methods.

[31]  Yongsheng Li,et al.  Rational design of a tubular, interlayer expanded MoS2–N/O doped carbon composite for excellent potassium-ion storage , 2019, Journal of Materials Chemistry A.

[32]  Junwei Lang,et al.  Candle soot: onion-like carbon, an advanced anode material for a potassium-ion hybrid capacitor , 2019, Journal of Materials Chemistry A.

[33]  Chengxin Peng,et al.  A polymer-direct-intercalation strategy for MoS2/carbon-derived heteroaerogels with ultrahigh pseudocapacitance , 2019, Nature Communications.

[34]  Yang Xu,et al.  Insights into the Crystallinity of Layer-Structured Transition Metal Dichalcogenides on Potassium Ion Battery Performance: A Case Study of Molybdenum Disulfide. , 2019, Small.

[35]  Xiulin Fan,et al.  Extremely stable antimony–carbon composite anodes for potassium-ion batteries , 2019, Energy & Environmental Science.

[36]  G. Meng,et al.  Enhancing potassium-ion battery performance by defect and interlayer engineering. , 2019, Nanoscale horizons.

[37]  Bingan Lu,et al.  Facile Synthesis of Copper Sulfide Nanosheet@Graphene Oxide for the Anode of Potassium‐Ion Batteries , 2019, Energy Technology.

[38]  Milin Zhang,et al.  Molten salt synthesis of Mn2O3 nanoparticle as a battery type positive electrode material for hybrid capacitor in KNO3-NaNO2-NaNO3 melts , 2018, Chemical Engineering Journal.

[39]  X. Qu,et al.  Bamboo‐Like Hollow Tubes with MoS2/N‐Doped‐C Interfaces Boost Potassium‐Ion Storage , 2018, Advanced Functional Materials.

[40]  Wei Wang,et al.  Metallic Graphene‐Like VSe2 Ultrathin Nanosheets: Superior Potassium‐Ion Storage and Their Working Mechanism , 2018, Advanced materials.

[41]  Ling Fan,et al.  A Nonaqueous Potassium‐Based Battery–Supercapacitor Hybrid Device , 2018, Advanced materials.

[42]  Chuanghan Hsu,et al.  A library of atomically thin metal chalcogenides , 2018, Nature.

[43]  Wei Lu,et al.  Superior Potassium Ion Storage via Vertical MoS2 "Nano-Rose" with Expanded Interlayers on Graphene. , 2017, Small.

[44]  Tianqi Li,et al.  Rapid mass production of two-dimensional metal oxides and hydroxides via the molten salts method , 2017, Nature Communications.

[45]  Chen Li,et al.  High Performance Lithium-Ion Hybrid Capacitors Employing Fe3O4-Graphene Composite Anode and Activated Carbon Cathode. , 2017, ACS applied materials & interfaces.

[46]  Jinyoung Chun,et al.  General Synthesis of N‐Doped Macroporous Graphene‐Encapsulated Mesoporous Metal Oxides and Their Application as New Anode Materials for Sodium‐Ion Hybrid Supercapacitors , 2017 .

[47]  Jinhua Ye,et al.  Targeted Synthesis of 2H‐ and 1T‐Phase MoS2 Monolayers for Catalytic Hydrogen Evolution , 2016, Advanced materials.

[48]  Clement Bommier,et al.  Hard Carbon Microspheres: Potassium‐Ion Anode Versus Sodium‐Ion Anode , 2016 .

[49]  Yanjie Hu,et al.  2D Monolayer MoS2–Carbon Interoverlapped Superstructure: Engineering Ideal Atomic Interface for Lithium Ion Storage , 2015, Advanced materials.

[50]  Liping Zhao,et al.  Sodium titanate nanotube/graphite, an electric energy storage device using Na+-based organic electrolytes , 2013 .

[51]  Bruce Dunn,et al.  High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. , 2012, ACS nano.

[52]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.