A testing scenario for probabilistic processes

We introduce a notion of finite testing, based on statistical hypothesis tests, via a variant of the well-known trace machine. Under this scenario, two processes are deemed observationally equivalent if they cannot be distinguished by any finite test. We consider processes modeled as image finite probabilistic automata and prove that our notion of observational equivalence coincides with the trace distribution equivalence proposed by Segala. Along the way, we give an explicit characterization of the set of probabilistic generalize the Approximation Induction Principle by defining an also prove limit and convex closure properties of trace distributions in an appropriate metric space.

[1]  Rocco De Nicola,et al.  Testing Equivalences for Processes , 1984, Theor. Comput. Sci..

[2]  Håkan L. S. Younes Probabilistic Verification for "Black-Box" Systems , 2005, CAV.

[3]  Håkan L. S. Younes,et al.  Probabilistic Verification of Discrete Event Systems Using Acceptance Sampling , 2002, CAV.

[4]  Jan A. Bergstra,et al.  On the Consistency of Koomen's Fair Abstraction Rule , 1987, Theor. Comput. Sci..

[5]  Nancy A. Lynch,et al.  Probabilistic Simulations for Probabilistic Processes , 1994, Nord. J. Comput..

[6]  R. Blute,et al.  Bisimulation for Labeled Markov Processes , 1997 .

[7]  Wang Yi,et al.  Testing preorders for probabilistic processes can be characterized by simulations , 2002, Theor. Comput. Sci..

[8]  Frits W. Vaandrager,et al.  A Testing Scenario for Probabilistic Automata , 2003, ICALP.

[9]  Håkan L. S. Younes,et al.  Numerical vs. Statistical Probabilistic Model Checking: An Empirical Study , 2004, TACAS.

[10]  Wang Yi,et al.  Compositional testing preorders for probabilistic processes , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[11]  Abbas Edalat,et al.  Bisimulation for Labelled Markov Processes , 2002, Inf. Comput..

[12]  Christel Baier,et al.  Model checking for a probabilistic branching time logic with fairness , 1998, Distributed Computing.

[13]  W. Rudin Real and complex analysis , 1968 .

[14]  Abbas Edalat Domain theory in stochastic processes , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[15]  Ivan Christoff,et al.  Testing Equivalences and Fully Abstract Models for Probabilistic Processes , 1990, CONCUR.

[16]  Roberto Segala,et al.  Verification of the randomized consensus algorithm of Aspnes and Herlihy: a case study , 2000, Distributed Computing.

[17]  J. K. Hunter,et al.  Measure Theory , 2007 .

[18]  Jan A. Bergstra,et al.  Verification of an alternating bit protocol by means of process algebra , 1985, Mathematical Methods of Specification and Synthesis of Software Systems.

[19]  Nancy A. Lynch,et al.  Proving time bounds for randomized distributed algorithms , 1994, PODC '94.

[20]  Farrokh Vatan,et al.  Distribution functions of probabilistic automata , 2001, STOC '01.

[21]  Rupak Majumdar,et al.  Tools and Algorithms for the Construction and Analysis of Systems , 1997, Lecture Notes in Computer Science.

[22]  Roberto Segala,et al.  Modeling and verification of randomized distributed real-time systems , 1996 .

[23]  Kishor S. Trivedi Probability and Statistics with Reliability, Queuing, and Computer Science Applications , 1984 .

[24]  G. Casella,et al.  Statistical Inference , 2003, Encyclopedia of Social Network Analysis and Mining.

[25]  Kim G. Larsen,et al.  Bisimulation through Probabilistic Testing , 1991, Inf. Comput..

[26]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[27]  Carroll Morgan,et al.  Remarks on Testing Probabilistic Processes , 2007, Computation, Meaning, and Logic.

[28]  R. V. Glabbeek The Linear Time-Branching Time Spectrum I The Semantics of Concrete , Sequential ProcessesR , 2007 .

[29]  Roberto Segala,et al.  Testing Probabilistic Automata , 1996, CONCUR.

[30]  R. A. Silverman,et al.  Introductory Real Analysis , 1972 .

[31]  W. Rudin Real and complex analysis, 3rd ed. , 1987 .

[32]  Mahesh Viswanathan,et al.  Statistical Model Checking of Black-Box Probabilistic Systems , 2004, CAV.

[33]  Carroll Morgan,et al.  Characterising Testing Preorders for Finite Probabilistic Processes , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[34]  Rob J. van Glabbeek,et al.  The Linear Time - Branching Time Spectrum I , 2001, Handbook of Process Algebra.

[35]  R. J. vanGlabbeek The linear time - branching time spectrum , 1990 .

[36]  Dan Suciu,et al.  Journal of the ACM , 2006 .

[37]  Frits W. Vaandrager,et al.  Root Contention in IEEE 1394 , 1999, ARTS.

[38]  Shay Kutten,et al.  Time Optimal Self-Stabilizing Spanning Tree Algorithms , 1993, FSTTCS.

[39]  Manuel Núñez,et al.  Denotational Semantics for Probabilistic Refusal Testing , 1998, PROBMIV.

[40]  Mariëlle Stoelinga,et al.  An Introduction to Probabilistic Automata , 2002, Bull. EATCS.

[41]  Rance Cleaveland,et al.  Testing Preorders for Probabilistic Processes , 1992, Inf. Comput..

[42]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .