Some laws of large numbers for arrays of random upper semicontinuous functions

Abstract The aim of this paper is to investigate some laws of large numbers for multidimensional arrays of level-wise negatively associated and level-wise pairwise negatively dependent random upper semicontinuous functions under various settings. We also provide some Rosenthal's type and Hajek-Renyi's type maximal inequalities for multi-dimensional structure. Our results are extensions of corresponding ones in the literature.

[1]  E. Lehmann Some Concepts of Dependence , 1966 .

[2]  Maximal inequalities and a law of the iterated logarithm for negatively associated random fields , 2006, math/0610511.

[3]  Kim C. Border,et al.  Infinite Dimensional Analysis: A Hitchhiker’s Guide , 1994 .

[4]  Sang Yeol Joo,et al.  Kolmogorov's strong law of large numbers for fuzzy random variables , 2001, Fuzzy Sets Syst..

[5]  Magda Peligrad,et al.  Maximal Inequalities and an Invariance Principle for a Class of Weakly Dependent Random Variables , 2003 .

[6]  N. Cressie,et al.  Statistics for Spatial Data. , 1992 .

[7]  Nguyen Van Quang,et al.  Strong laws of large numbers for adapted arrays of set-valued and fuzzy-valued random variables in Banach space , 2012, Fuzzy Sets Syst..

[8]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[9]  Allan Gut,et al.  Complete convergence for arrays , 1992 .

[10]  Ilya Molchanov On strong laws of large numbers for random upper semicontinuous functions , 1999 .

[11]  A. Khursheed,et al.  Positive dependence in multivariate distributions , 1981 .

[12]  Pingyan Chen,et al.  The Hájeck-Rényi inequality for the NA random variables and its application , 1999 .

[13]  Pedro Terán,et al.  A strong law of large numbers for random upper semicontinuous functions under exchangeability conditions , 2003 .

[14]  A weak convergence for negatively associated fields , 2001 .

[15]  Li Liu,et al.  Precise large deviations for dependent random variables with heavy tails , 2009 .

[16]  Ke-ang Fu A Note on Strong Laws of Large Numbers for Dependent Random Sets and Fuzzy Random Sets , 2010 .

[17]  A. Bulinski,et al.  Limit Theorems for Associated Random Fields and Related Systems , 2007 .

[18]  Przemysław Matuła,et al.  A note on the almost sure convergence of sums of negatively dependent random variables , 1992 .

[19]  Tommy Norberg Semicontinuous processes in multi-dimensional extreme value theory , 1987 .

[20]  Ana Colubi,et al.  A generalized strong law of large numbers , 1999 .

[21]  Qi-Man Shao,et al.  A Comparison Theorem on Moment Inequalities Between Negatively Associated and Independent Random Variables , 2000 .

[22]  R. Smythe Strong Laws of Large Numbers for $r$-Dimensional Arrays of Random Variables , 1973 .

[23]  Liangjian Hu,et al.  The variance and covariance of fuzzy random variables and their applications , 2001, Fuzzy Sets Syst..

[24]  Nguyen Van Quang,et al.  Negative association and negative dependence for random upper semicontinuous functions, with applications , 2016, J. Multivar. Anal..

[25]  N. Quang,et al.  A Hájek-Rényi-Type Maximal Inequality and Strong Laws of Large Numbers for Multidimensional Arrays , 2010 .

[26]  K. Joag-dev,et al.  Negative Association of Random Variables with Applications , 1983 .

[27]  Oleg Klesov Limit Theorems for Multi-Indexed Sums of Random Variables , 2014 .

[28]  Davar Khoshnevisan,et al.  Multiparameter Processes: An Introduction to Random Fields , 2002 .

[29]  R. Goetschel,et al.  Elementary fuzzy calculus , 1986 .

[30]  Yuhu Feng,et al.  An approach to generalize laws of large numbers for fuzzy random variables , 2002, Fuzzy Sets Syst..

[31]  Pedro Terán,et al.  Joint measurability of mappings induced by a fuzzy random variable , 2021, Fuzzy Sets Syst..