The Transfer Function of Non-Stationary Indoor Channels and its Relationship to System Functions of LFMCW Radars

This paper studies the relationship between the time-variant (TV) channel transfer function (CTF) of non-stationary indoor channels and the system functions of linear frequency modulated continuous waves (LFMCW) radars. To do so, we consider a moving person/object in indoor environments, which is modelled by a cluster of moving point scatterers. It is shown that the TVCTF can be obtained from the beat signal of LFMCW radar systems. Analytical expressions are derived for the TV demodulated radar response, the complex channel gain, and the TV Doppler-delay profile. A relationship between the presented results and existing non-stationary indoor channel models assuming pulsed wave systems is also investigated. Finally, real-world measured LFMCW radar data is used to confirm the correctness of the presented analytical findings.