Decomposition rank of approximately subhomogeneous C*-algebras
暂无分享,去创建一个
[1] Stefan Friedl. Algebraic topology , 2020, Graduate Studies in Mathematics.
[2] Jorge Castillejos,et al. Nuclear dimension of simple stably projectionless C∗-algebras , 2019, Analysis & PDE.
[3] A. Tikuisis,et al. Nuclear dimension of simple $$\mathrm {C}^*$$-algebras , 2019, Inventiones mathematicae.
[4] G. Elliott,et al. The classification of simple separable unital Z-stable locally ASH algebras , 2017 .
[5] A. Tikuisis,et al. Quasidiagonality of nuclear C*-algebras , 2015, 1509.08318.
[6] G. Elliott,et al. On the classification of simple amenable C*-algebras with finite decomposition rank , 2015, 1507.07876.
[7] A. Tikuisis,et al. Covering Dimension of C*-Algebras and 2-Coloured Classification , 2015, Memoirs of the American Mathematical Society.
[8] G. Elliott,et al. The classification of simple separable unital locally ASH algebras , 2015, 1506.02308.
[9] Huaxin Lin. Crossed products and minimal dynamical systems , 2015, Journal of Topology and Analysis.
[10] Huaxin Lin,et al. Classification of finite simple amenable ${\cal Z}$-stable $C^*$-algebras , 2014, 1501.00135.
[11] G. Elliott,et al. The C∗-algebra of a minimal homeomorphism of zero mean dimension , 2014, 1406.2382.
[12] A. Tikuisis. High-dimensional Z-stable AH algebras , 2014, 1406.0883.
[13] Dominic Enders. Subalgebras of finite codimension in semiprojective C*-algebras , 2014, 1405.2750.
[14] Wilhelm Winter,et al. Nuclear dimension and $$\mathcal Z$$Z-stability , 2014, 1403.0747.
[15] W. Winter. Classifying crossed product C*-algebras , 2013, 1308.5084.
[16] Yasuhiko Sato,et al. Decomposition rank of UHF-absorbing c* -algebras , 2013, 1303.4371.
[17] Luis Santiago. Reduction of the dimension of nuclear C*-algebras , 2012, 1211.7159.
[18] A. Tikuisis,et al. Decomposition rank of -stable C∗-algebras , 2012, 1210.1386.
[19] José R. Carrión. Classification of a class of crossed product C⁎-algebras associated with residually finite groups , 2011 .
[20] Leonel Robert,et al. Classification of inductive limits of 1-dimensional NCCW complexes , 2010, 1007.1964.
[21] Bhishan Jacelon,et al. A simple, monotracial, stably projectionless C*‐algebra , 2010, J. Lond. Math. Soc..
[22] W. Winter,et al. Quasitraces are Traces: A Short Proof of the Finite-Nuclear-Dimension Case , 2010, 1005.2229.
[23] W. Winter. Decomposition rank and $\mathcal{Z}$ -stability , 2010 .
[24] Karen R. Strung,et al. Minimal dynamics and Z-stable classification , 2010, 1001.1268.
[25] Andrew S. Toms. K-theoretic rigidity and slow dimension growth , 2009, 0910.2061.
[26] Andrew S. Toms,et al. Minimal dynamics and the classification of C*-algebras , 2009, Proceedings of the National Academy of Sciences.
[27] P. W. Ng,et al. Nuclear dimension and the corona factorization property , 2009, 0904.0716.
[28] Andrew S. Toms,et al. Minimal Dynamics and K-Theoretic Rigidity: Elliott’s Conjecture , 2009, 0903.4133.
[29] Wilhelm Winter,et al. Decomposition rank and Z-stability , 2008, 0806.2948.
[30] Huaxin Lin. Asymptotically Unitary Equivalence and Classification of Simple Amenable C*-algebras , 2008, 0806.0636.
[31] Wilhelm Winter,et al. The Jiang–Su algebra revisited , 2008, 0801.2259.
[32] G. Pedersen,et al. Limits and C*-algebras of low rank or dimension , 2007, 0708.2727.
[33] Andrew S. Toms,et al. Regularity properties in the classification program for separable amenable C*-algebras , 2007, 0704.1803.
[34] Andrew S. Toms,et al. The Elliott conjecture for Villadsen algebras of the first type , 2006, math/0611059.
[35] P. W. Ng,et al. A Note On Subhomogeneous C*-Algebras , 2006, math/0601069.
[36] W. Winter. On the Classification of Simple Z‐Stable C*‐Algebras with Real Rank Zero and Finite Decomposition Rank , 2005, math/0502181.
[37] N. Christopher Phillips,et al. Crossed products by minimal homeomorphisms , 2004, math/0408291.
[38] E. Kirchberg,et al. Purely infinite C*-Algebras: Ideal-preserving zero homotopies , 2003, math/0312286.
[39] W. Winter. Decomposition Rank of Subhomogeneous C*‐Algebras , 2002, math/0210420.
[40] W. Winter,et al. COVERING DIMENSION AND QUASIDIAGONALITY , 2002, math/0207164.
[41] N. Phillips,et al. Recursive subhomogeneous algebras , 2001, math/0101156.
[42] N. Christopher Phillips. Cancellation and stable rank for direct limits of recursive subhomogeneous algebras , 2001, math/0101157.
[43] I. Putnam. On the $K$-Theory of $C^*$-Algebras of Principal Groupoids , 1998 .
[44] Terry A. Loring,et al. Lifting solutions to perturbing problems in C*-algebras , 1996 .
[45] T. Giordano,et al. Topological orbit equivalence and C*-crossed products. , 1995 .
[46] G. Elliott,et al. The structure of the irrational rotation C*-algebra , 1993 .
[47] M. Rørdam. On the structure of simple C∗-algebras tensored with a UHF-algebra, II , 1991 .
[48] I. Putnam,et al. The C∗-algebras associated with minimal homeomorphisms of the Cantor set , 1989 .
[49] Claude L. Schochet,et al. The Künneth theorem and the universal coefficient theorem for Kasparov’s generalized $K$-functor , 1987 .
[50] G. Pedersen. C-Algebras and Their Automorphism Groups , 1979 .
[51] in simple , 2023 .
[52] G. Elliott,et al. ON THE CLASSIFICATION OF SIMPLE UNITAL C *-ALGEBRAS WITH FINITE DECOMPOSITION RANK , 2015 .
[53] Stuart White,et al. Nuclear dimension and Z -stability , 2015 .
[54] Karen R. Strung,et al. MINIMAL DYNAMICS AND $\mathcal{Z}$-STABLE CLASSIFICATION , 2011 .
[55] Søren Eilers,et al. STABILITY OF ANTICOMMUTATION RELATIONS : AN APPLICATION OF NONCOMMUTATIVE CW COMPLEXES , 1998 .
[56] J. Hatzenbuhler,et al. DIMENSION THEORY , 1997 .
[57] Sze-Tsen Hu,et al. Theory of Retracts. , 1968 .
[58] Karol Borsuk,et al. Theory Of Retracts , 1967 .