Metamorphic and chronological constraints on the early Paleozoic tectono‐thermal evolution of the Olkhon Terrane, southern Siberia

Terranes accreted to the southeastern margin of the Siberian Craton record an important early Paleozoic tectono‐thermal event (known as the Baikal orogenic cycle) in the evolution of the Central Asian Orogenic Belt (CAOB). However, the precise metamorphic conditions and relative timing of this event and its linkage to the wider CAOB remain far poorly constrained. The best exposed of these terranes is the Olkhon Terrane on the western bank of Lake Baikal. Here, late Neoproterozoic through early Paleozoic island arc and back‐arc assemblages were metamorphosed to form a thin granulite facies belt cropping out adjacent to the Siberian Craton and lower temperature/pressure paragneiss and migmatite towards the southeast. Phase equilibria modelling suggests that the granulite facies belt preserved moderate pressure (c. 0.80 GPa) and high temperature (up to 900°C) conditions while the paragneiss and migmatites in the southeast have peak metamorphic conditions around 700–770°C at 0.60–0.80 GPa. New geochronological data (zircon U–Pb in granulite and monazite U–Pb in paragneiss/migmatite) in combination with phase equilibria modelling and petro‐structural analysis suggest that the tectono‐metamorphic evolution of the Olkhon Terrane was controlled by a long‐lasting (535–450 Ma) and pervasive thermal anomaly. Discrete maxima in the zircon and monazite U–Pb ages at c. 535, 500, and 450 Ma are linked to different stages of a semi‐continuous high‐temperature metamorphic evolution. Based on existing geological data of the region, a generalized geodynamic model for the Baikal orogenic cycle involving switching between compressional and extensional regimes during the early Paleozoic accretion of ‘exotic’ CAOB‐derived material to the southern margin of Siberia is proposed. The tectono‐metamorphic evolution of the Olkhon Terrane may represent a world‐class example of polyphase shortening of a long‐lived hot intra‐continental arc–back‐arc system during its collision with cratonic blocks.

[1]  K. Schulmann,et al.  Structure, geochronology, and petrogenesis of Permian peraluminous granite dykes in the southern Chinese Altai as indicators of Altai−East Junggar convergence , 2022, GSA Bulletin.

[2]  A. Sizov,et al.  Cambrian/Ordovician boundary as a milestone in the sedimentation history of the southern Siberian craton: Evidence from U-Pb dating of detrital zircons , 2022, Journal of Asian Earth Sciences: X.

[3]  N. Volkova,et al.  P–T CONDITIONS, U/Pb AND 40Ar/39Ar ISOTOPIC AGES OF UHT GRANULITES FROM CAPE KALTYGEI, WESTERN BAIKAL REGION , 2021, Geodynamics & Tectonophysics.

[4]  T. Gerya,et al.  Trans-lithospheric diapirism explains the presence of ultra-high pressure rocks in the European Variscides , 2021, Communications Earth & Environment.

[5]  Zhang Yuanyuan,et al.  Some advances and research approaches on granulite , 2021 .

[6]  D. Gladkochub,et al.  Collision system of West Pribaikalie: aerospace geological map of Olkhon Region (Baikal, Russia) , 2020, Geodynamics & Tectonophysics.

[7]  E. Pushkarev,et al.  Dismembered Ophiolite of the Olkhon Composite Terrane (Baikal, Russia): Petrology and Emplacement , 2020, Minerals.

[8]  D. Gladkochub,et al.  Regional, Contact Metamorphism, and Autometamorphism of the Olkhon Terrane (West Baikal Area) , 2020, Petrology.

[9]  T. Zack,et al.  Assessment of Five Monazite Reference Materials for U-Th/Pb Dating Using Laser-Ablation ICP-MS , 2019, Geosciences.

[10]  R. Hyndman Mountain Building Orogeny in Precollision Hot Backarcs: North American Cordillera, India‐Tibet, and Grenville Province , 2019, Journal of Geophysical Research: Solid Earth.

[11]  R. Hyndman Origin of Regional Barrovian Metamorphism in Hot Backarcs Prior to Orogeny Deformation , 2019, Geochemistry, Geophysics, Geosystems.

[12]  M. Brown,et al.  Secular change in metamorphism and the onset of global plate tectonics , 2018 .

[13]  P. Hanžl,et al.  Neoproterozoic‐Early Paleozoic Peri‐Pacific Accretionary Evolution of the Mongolian Collage System: Insights From Geochemical and U‐Pb Zircon Data From the Ordovician Sedimentary Wedge in the Mongolian Altai , 2017 .

[14]  D. Gladkochub,et al.  First data on the age of rocks from the northern flank of the Olkhon terrane, western Baikal area , 2017, Doklady Earth Sciences.

[15]  E. B. Sal’nikova,et al.  Compositions of gabbro intrusions in the Krestovsky zone (western Baikal region): A record of plume–suprasubduction mantle interaction , 2017 .

[16]  D. Rubatto,et al.  Monazite behaviour during isothermal decompression in pelitic granulites: a case study from Dinggye, Tibetan Himalaya , 2017, Contributions to Mineralogy and Petrology.

[17]  D. Rubatto Zircon: The Metamorphic Mineral , 2017 .

[18]  P. Hanžl,et al.  Geochemical and geochronological constraints on distinct Early-Neoproterozoic and Cambrian accretionary events along southern margin of the Baydrag Continent in western Mongolia , 2017 .

[19]  N. Volkova,et al.  Age of overthrust-type granites in the accretionary‒collisional system of the early Caledonides (western Baikal region) , 2017, Doklady Earth Sciences.

[20]  E. Sklyarov,et al.  ALLOCHTHONOUS MARBLES IN HIGH-GRADE METAMORPHIC TERRANES (A CASE STUDY OF OLKHON TERRANE, WEST BAIKAL AREA, RUSSIA) , 2017 .

[21]  R. Powell,et al.  Activity–composition relations for the calculation of partial melting equilibria in metabasic rocks , 2016 .

[22]  J. Bowring,et al.  Community‐Derived Standards for LA‐ICP‐MS U‐(Th‐)Pb Geochronology – Uncertainty Propagation, Age Interpretation and Data Reporting , 2016 .

[23]  J. Hourigan,et al.  Interaction between the Central Asian Orogenic Belt (CAOB) and the Siberian craton as recorded by detrital zircon suites from Transbaikalia , 2015 .

[24]  C. Yuan,et al.  A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion , 2015 .

[25]  M. Kohn,et al.  The fall and rise of metamorphic zircon , 2015 .

[26]  S. W. Faryad,et al.  Polymetamorphic evolution of the granulite-facies Paleoproterozoic basement of the Kabul Block, Afghanistan , 2015, Mineralogy and Petrology.

[27]  V. Schenk,et al.  Two-stage granulite formation in a Proterozoic magmatic arc (Ongole domain of the Eastern Ghats Belt, India): Part 1. Petrology and pressure–temperature evolution , 2014 .

[28]  R. Parrish,et al.  Developing an inverted Barrovian sequence; insights from monazite petrochronology , 2014 .

[29]  E. Lepekhina,et al.  Fragment of the Early Paleozoic (∼500 Ma) island arc in the structure of the Olkhon Terrane, Central Asian fold belt , 2014, Doklady Earth Sciences.

[30]  R. Powell,et al.  New mineral activity–composition relations for thermodynamic calculations in metapelitic systems , 2014 .

[31]  F. Zhimulev,et al.  Detrital zircon provenance of early Palaeozoic sediments at the southwestern margin of the Siberian Craton: Insights from U–Pb geochronology , 2014 .

[32]  P. Reiners,et al.  Variable exhumation rates and variable displacement rates: Documenting recent slowing of Himalayan shortening in western Bhutan , 2014 .

[33]  E. Lepekhina,et al.  Crystallization history of Paleozoic granitoids in the Ol’khon region, Lake Baikal (SHRIMP-II zircon dating) , 2014 .

[34]  N. Volkova,et al.  Restitic ultramafic rocks in the Early Caledonian collisional system of western Cisbaikalia , 2013 .

[35]  A. Kuznetsov,et al.  The Vendian passive continental margin in the southern Siberian Craton: geochemical and isotopic (Sr, Sm–Nd) evidence and U–Pb dating of detrital zircons by the LA-ICP-MS method , 2013 .

[36]  D. Gladkochub,et al.  Synmetamorphic granitoids (~490 Ma) as accretion indicators in the evolution of the Ol'khon terrane (western Cisbaikalia) , 2013 .

[37]  S. Pisarevsky,et al.  Early evolution of the Paleoasian ocean: LA-ICP-MS dating of detrital zircon from Late Precambrian sequences of the southern margin of the Siberian craton , 2013 .

[38]  A. Ivanov,et al.  Late Paleozoic - Mesozoic subduction-related magmatism at the southern margin of the Siberian continent and the 150 million-year history of the Mongol-Okhotsk Ocean , 2013 .

[39]  N. Kelly,et al.  Complexity in the behavior and recrystallization of monazite during high-T metamorphism and fluid infiltration , 2012 .

[40]  S. N. Rudnev,et al.  Early Paleozoic magmatism in the Bumbat-Hairhan area of the Lake Zone in western Mongolia (geological, petrochemical, and geochronological data) , 2012 .

[41]  E. B. Sal’nikova,et al.  Convergent boundaries and related igneous and metamorphic complexes in caledonides of Central Asia , 2012, Geotectonics.

[42]  U. Linnemann,et al.  Neoproterozoic ice sheets of the Siberian Platform: U-Pb-LA-ICP-MS ages of detrital zircons from the Bol’shoi Patom formation and the geotectonic position of its provenance , 2011 .

[43]  P. Jian,et al.  Zircon ages for a felsic volcanic rock and arc-related early Palaeozoic sediments on the margin of the Baydrag microcontinent, central Asian orogenic belt, Mongolia , 2011 .

[44]  Roger Powell,et al.  An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids , 2011 .

[45]  N. Volkova,et al.  The geodynamic model of formation of Early Caledonides in the Olkhon Region (West Pribaikalie) , 2011 .

[46]  R. Powell,et al.  Progress in linking accessory mineral growth and breakdown to major mineral evolution in metamorphic rocks: a thermodynamic approach in the Na2O‐CaO‐K2O‐FeO‐MgO‐Al2O3‐SiO2‐H2O‐TiO2‐ZrO2 system , 2011 .

[47]  G. P. Sandimirova,et al.  Nd-Sr systematics of metamagmatic rocks of the Anginskaya and Talanchanskaya Formations, middle part of Lake Baikal , 2010 .

[48]  M. Corsini,et al.  Structural constraints on the evolution of the Central Asian Orogenic Belt in SW Mongolia , 2010, American Journal of Science.

[49]  G. Foulger Petrology and Geochemistry , 2010 .

[50]  S. N. Rudnev,et al.  U-Pb isotopic dating of zircons (SHRIMP-II) from granulites of the Ol’khon region of Western Baikal area , 2010 .

[51]  L. Yongsheng,et al.  Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS , 2010 .

[52]  A. Larionov,et al.  The Olkhon metamorphic terrane in the Baikal region: An Early Paleozoic collage of Neoproterozoic active margin fragments , 2010 .

[53]  Donna L. Whitney,et al.  Abbreviations for names of rock-forming minerals , 2010 .

[54]  N. Volkova,et al.  Thermochronology of the Chernorud granulite zone, Ol’khon Region, Western Baikal area , 2009 .

[55]  E. B. Sal’nikova,et al.  Carbonatites in collisional settings and pseudo-carbonatites of the Early Paleozoic Ol’khon collisional system , 2009 .

[56]  G. Godard Two orogenic cycles recorded in eclogite-facies gneiss from the southern Armorican Massif (France) , 2009 .

[57]  E. Sklyarov,et al.  Island arc-back-arc basin evolution: implications for Late Riphean-Early Paleozoic geodynamic history of the Sayan-Baikal folded area , 2009 .

[58]  N. Volkova,et al.  U-Pb dating and Sm-Nd systematics of igneous rocks in the Ol’khon region (Western Baikal Coast) , 2008 .

[59]  Shan Gao,et al.  In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard , 2008 .

[60]  A. M. Kozlovskii,et al.  Vendian stage in formation of the Early Caledonian superterrane in Central Asia , 2008 .

[61]  V. Sukhorukov,et al.  Duration of migmatite formation in the Ol’khon collision system, western Baikal region: Evidence from concentration profiles of garnet , 2008 .

[62]  D. Gladkochub,et al.  New data on the age and protolith of granulites of the Olkhon collisional system (Baikal Region) , 2008 .

[63]  W. Collins,et al.  Geodynamic significance of S-type granites in circum-Pacific orogens , 2008 .

[64]  C. Beaumont,et al.  Thinning of continental backarc lithosphere by flow-induced gravitational instability , 2008 .

[65]  M. Whitehouse,et al.  Plesovice zircon : A new natural reference material for U-Pb and Hf isotopic microanalysis , 2008 .

[66]  M. Wingate,et al.  Petrology, geochronology, and tectonic implications of c. 500 Ma metamorphic and igneous rocks along the northern margin of the Central Asian Orogen (Olkhon terrane, Lake Baikal, Siberia) , 2008, Journal of the Geological Society.

[67]  N. Kelly,et al.  Zircon Behaviour and the Thermal Histories of Mountain Chains , 2007 .

[68]  Brian F. Windley,et al.  Tectonic models for accretion of the Central Asian Orogenic Belt , 2007, Journal of the Geological Society.

[69]  E. B. Sal’nikova,et al.  Vendian metamorphism in the accretionary-collisional structure of central Asia , 2006 .

[70]  L. Srogi,et al.  Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington Complex, Delaware: Morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and monazite , 2006 .

[71]  N. Volkova,et al.  The Ol'khon collision system (Baikal region) , 2005 .

[72]  R. Hyndman,et al.  Subduction zone backarcs, mobile belts, and orogenic heat , 2005 .

[73]  William L. Griffin,et al.  The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology , 2004 .

[74]  B. Windley,et al.  Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt , 2003 .

[75]  E. Khain The Palaeo-Asian ocean in the Neoproterozoic and early Palaeozoic: new geochronologic data and palaeotectonic reconstructions , 2003 .

[76]  U. Schaltegger,et al.  The Composition of Zircon and Igneous and Metamorphic Petrogenesis , 2003 .

[77]  F. Corfu,et al.  Atlas of Zircon Textures , 2003 .

[78]  D. Pattison Petrogenetic significance of orthopyroxene‐free garnet + clinopyroxene + plagioclase ± quartz‐bearing metabasites with respect to the amphibolite and granulite facies , 2003 .

[79]  K. Ludwig User's Manual for Isoplot 3.00 - A Geochronological Toolkit for Microsoft Excel , 2003 .

[80]  T. Harrison,et al.  Interpretation of monazite ages obtained via in situ analysis , 2002 .

[81]  E. Khain,et al.  The most ancient ophiolite of the Central Asian fold belt: U–Pb and Pb–Pb zircon ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and geodynamic implications , 2002 .

[82]  D. Rubatto Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism , 2002 .

[83]  M. Kohn,et al.  Pressure-temperature-time path discontinuity in the Main Central thrust zone, central Nepal , 2001 .

[84]  K. Schulmann,et al.  Thermally softened continental extensional zones (arcs and rifts) as precursors to thickened orogenic belts , 2001 .

[85]  M. Kohn,et al.  Retrograde net transfer reaction insurance for pressure-temperature estimates , 2000 .

[86]  K. Schulmann,et al.  Granulite microfabrics and deformation mechanisms in southern Madagascar , 1999 .

[87]  V. Makrygina The importance of geochemical data for geodynamic reconstruction: formation of the Olkhon metamorphic complex, Lake Baikal, Russia , 1998 .

[88]  E. B. Sal’nikova,et al.  U-Pb Zircon Dating of Granulite Metamorphism in the Sludyanskiy Complex, Eastern Siberia , 1998 .

[89]  R. Walker,et al.  U-Pb Monazite Geochronology of Granitic Rocks from Maine: Implications for Late Paleozoic Tectonics in the Northern Appalachians , 1996, The Journal of Geology.

[90]  W. Griffin,et al.  THREE NATURAL ZIRCON STANDARDS FOR U‐TH‐PB, LU‐HF, TRACE ELEMENT AND REE ANALYSES , 1995 .

[91]  A. Şengör,et al.  Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia , 1993, Nature.

[92]  F. Spear,et al.  Effects of diffusional modification of garnet growth zoning on P-T path calculations , 1991 .

[93]  C. Chamberlain,et al.  Apparent isobaric cooling paths from granulites: Two counterexamples from British Columbia and New Hampshire , 1990 .

[94]  A. Thompson Heat, Fluids, and Melting in the Granulite Facies , 1990 .

[95]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[96]  Nobuo Morimoto,et al.  Nomenclature of Pyroxenes , 1988, Mineralogical Magazine.

[97]  R. Powell,et al.  An internally consistent dataset with uncertainties and correlations: 3. Applications to geobarometry, worked examples and a computer program , 1988 .