miRNEST database: an integrative approach in microRNA search and annotation

Despite accumulating data on animal and plant microRNAs and their functions, existing public miRNA resources usually collect miRNAs from a very limited number of species. A lot of microRNAs, including those from model organisms, remain undiscovered. As a result there is a continuous need to search for new microRNAs. We present miRNEST (http://mirnest.amu.edu.pl), a comprehensive database of animal, plant and virus microRNAs. The core part of the database is built from our miRNA predictions conducted on Expressed Sequence Tags of 225 animal and 202 plant species. The miRNA search was performed based on sequence similarity and as many as 10 004 miRNA candidates in 221 animal and 199 plant species were discovered. Out of them only 299 have already been deposited in miRBase. Additionally, miRNEST has been integrated with external miRNA data from literature and 13 databases, which includes miRNA sequences, small RNA sequencing data, expression, polymorphisms and targets data as well as links to external miRNA resources, whenever applicable. All this makes miRNEST a considerable miRNA resource in a sense of number of species (544) that integrates a scattered miRNA data into a uniform format with a user-friendly web interface.

[1]  Chi-Ying F. Huang,et al.  miRTarBase: a database curates experimentally validated microRNA–target interactions , 2010, Nucleic Acids Res..

[2]  M. D. Boer,et al.  MicroRNAs in acute leukemia: from biological players to clinical contributors , 2012, Leukemia.

[3]  P. Sharp,et al.  MicroRNA functions in stress responses. , 2010, Molecular cell.

[4]  B. Cullen,et al.  Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. , 2004, RNA.

[5]  Katherine E. Guill,et al.  A Genome-Wide Characterization of MicroRNA Genes in Maize , 2009, PLoS genetics.

[6]  Walter Fontana,et al.  Fast folding and comparison of RNA secondary structures , 1994 .

[7]  María Martín,et al.  Ongoing and future developments at the Universal Protein Resource , 2010, Nucleic Acids Res..

[8]  Jennifer Daub,et al.  Expressed sequence tags: medium-throughput protocols. , 2004, Methods in molecular biology.

[9]  L. O’Neill,et al.  MicroRNAs: the fine-tuners of Toll-like receptor signalling , 2011, Nature Reviews Immunology.

[10]  Pengfei Cai,et al.  Identification and characterization of microRNAs and endogenous siRNAs in Schistosoma japonicum , 2010, BMC Genomics.

[11]  Fabian J Theis,et al.  PhenomiR: a knowledgebase for microRNA expression in diseases and biological processes , 2010, Genome Biology.

[12]  Yuasa Takashi,et al.  The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. , 2005, RNA.

[13]  Baohong Zhang,et al.  Identification and characterization of new plant microRNAs using EST analysis , 2005, Cell Research.

[14]  Dennis Shasha,et al.  miRò: a miRNA knowledge base , 2009, Database J. Biol. Databases Curation.

[15]  Wen-chang Lin,et al.  Vir-Mir db: prediction of viral microRNA candidate hairpins , 2007, Nucleic Acids Res..

[16]  Martin Reczko,et al.  Lost in translation: an assessment and perspective for computational microRNA target identification , 2009, Bioinform..

[17]  Tao Wang,et al.  PMRD: plant microRNA database , 2009, Nucleic Acids Res..

[18]  Michel Georges,et al.  Patrocles: a database of polymorphic miRNA-mediated gene regulation in vertebrates , 2008, Nucleic Acids Res..

[19]  Javier F. Palatnik,et al.  Specific effects of microRNAs on the plant transcriptome. , 2005, Developmental cell.

[20]  Sean R. Eddy,et al.  Rfam: annotating non-coding RNAs in complete genomes , 2004, Nucleic Acids Res..

[21]  Vasile Palade,et al.  microPred: effective classification of pre-miRNAs for human miRNA gene prediction , 2009, Bioinform..

[22]  Hui Zhou,et al.  ncRNAimprint: a comprehensive database of mammalian imprinted noncoding RNAs. , 2010, RNA.

[23]  D. di Bernardo,et al.  CoGemiR: A comparative genomics microRNA database , 2008, BMC Genomics.

[24]  Vladimir B. Bajic,et al.  dPORE-miRNA: Polymorphic Regulation of MicroRNA Genes , 2011, PloS one.

[25]  X. Huang,et al.  CAP3: A DNA sequence assembly program. , 1999, Genome research.

[26]  Yann Ponty,et al.  VARNA: Interactive drawing and editing of the RNA secondary structure , 2009, Bioinform..

[27]  Riccardo Velasco,et al.  Ontology-oriented retrieval of putative microRNAs in Vitis vinifera via GrapeMiRNA: a web database of de novo predicted grape microRNAs , 2009, BMC Plant Biology.

[28]  Xiaowei Wang miRDB: a microRNA target prediction and functional annotation database with a wiki interface. , 2008, RNA.

[29]  Alejandro A. Schäffer,et al.  A Fast and Symmetric DUST Implementation to Mask Low-Complexity DNA Sequences , 2006, J. Comput. Biol..

[30]  R. Agami,et al.  Interplay between microRNAs and RNA-binding proteins determines developmental processes , 2008, Cell cycle.

[31]  L. Lim,et al.  An Abundant Class of Tiny RNAs with Probable Regulatory Roles in Caenorhabditis elegans , 2001, Science.

[32]  Ze-Guang Han,et al.  Genome-Wide Identification of Schistosoma japonicum MicroRNAs Using a Deep-Sequencing Approach , 2009, PloS one.

[33]  Evgeny M. Zdobnov,et al.  miROrtho: computational survey of microRNA genes , 2008, Nucleic Acids Res..

[34]  David L. Wheeler,et al.  GenBank , 2015, Nucleic Acids Res..

[35]  E. Lai Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation , 2002, Nature Genetics.

[36]  Hsien-Da Huang,et al.  miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomes , 2005, Nucleic Acids Res..

[37]  Changning Liu,et al.  dbDEMC: a database of differentially expressed miRNAs in human cancers , 2010, BMC Genomics.

[38]  Eric Lai,et al.  MicroRNA-Related Cofilin Abnormality in Alzheimer's Disease , 2010, PloS one.

[39]  Scott A. Givan,et al.  ASRP: the Arabidopsis Small RNA Project Database , 2004, Nucleic Acids Res..

[40]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[41]  Dennis B. Troup,et al.  NCBI GEO: archive for functional genomics data sets—10 years on , 2010, Nucleic Acids Res..

[42]  B. Reinhart,et al.  MicroRNAs in plants. , 2002, Genes & development.

[43]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[44]  M. Boguski,et al.  dbEST — database for “expressed sequence tags” , 1993, Nature Genetics.

[45]  Hui Zhou,et al.  deepBase: a database for deeply annotating and mining deep sequencing data , 2009, Nucleic Acids Res..

[46]  Simone Brabletz,et al.  The ZEB1/miR‐200 feedback loop controls Notch signalling in cancer cells , 2011, The EMBO journal.

[47]  Boris Lenhard,et al.  RNAdb 2.0—an expanded database of mammalian non-coding RNAs , 2006, Nucleic Acids Res..

[48]  Ana Kozomara,et al.  miRBase: integrating microRNA annotation and deep-sequencing data , 2010, Nucleic Acids Res..

[49]  Duangdao Wichadakul,et al.  MicroPC (μPC): A comprehensive resource for predicting and comparing plant microRNAs , 2009, BMC Genomics.

[50]  Tongbin Li,et al.  miRecords: an integrated resource for microRNA–target interactions , 2008, Nucleic Acids Res..

[51]  V. Kim,et al.  The nuclear RNase III Drosha initiates microRNA processing , 2003, Nature.