Differentiable Learning of Submodular Models
暂无分享,去创建一个
[1] J. Boot,et al. On Sensitivity Analysis in Convex Quadratic Programming Problems , 1963 .
[2] László Lovász,et al. Submodular functions and convexity , 1982, ISMP.
[3] A. Shapiro. Sensitivity analysis of nonlinear programs and differentiability properties of metric projections , 1988 .
[4] F. T. Wright,et al. Order restricted statistical inference , 1988 .
[5] Michael J. Best,et al. Active set algorithms for isotonic regression; A unifying framework , 1990, Math. Program..
[6] H. Groenevelt. Two algorithms for maximizing a separable concave function over a polymatroid feasible region , 1991 .
[7] Satoru Fujishige,et al. Submodular functions and optimization , 1991 .
[8] Nilotpal Chakravarti. Sensitivity Analysis in Isotonic Regression , 1993, Discret. Appl. Math..
[9] Maurice Queyranne,et al. Minimizing symmetric submodular functions , 1998, Math. Program..
[10] R. Tyrrell Rockafellar,et al. Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.
[11] Alexander Schrijver,et al. A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time , 2000, J. Comb. Theory B.
[12] Jack Edmonds,et al. Submodular Functions, Matroids, and Certain Polyhedra , 2001, Combinatorial Optimization.
[13] Ben Taskar,et al. Max-Margin Markov Networks , 2003, NIPS.
[14] Vladimir Kolmogorov,et al. An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[15] Thomas Hofmann,et al. Large Margin Methods for Structured and Interdependent Output Variables , 2005, J. Mach. Learn. Res..
[16] S. Fujishige,et al. The Minimum-Norm-Point Algorithm Applied to Submodular Function Minimization and Linear Programming , 2006 .
[17] Martin J. Wainwright,et al. Estimating the "Wrong" Graphical Model: Benefits in the Computation-Limited Setting , 2006, J. Mach. Learn. Res..
[18] Marshall F. Tappen,et al. Utilizing Variational Optimization to Learn Markov Random Fields , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.
[19] Shimon Ullman,et al. Combined Top-Down/Bottom-Up Segmentation , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[20] Pushmeet Kohli,et al. Robust Higher Order Potentials for Enforcing Label Consistency , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.
[21] Francis R. Bach,et al. Structured sparsity-inducing norms through submodular functions , 2010, NIPS.
[22] Yoram Singer,et al. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization , 2011, J. Mach. Learn. Res..
[23] Francis Bach,et al. Shaping Level Sets with Submodular Functions , 2010, NIPS.
[24] Shuji Kijima,et al. Online Prediction under Submodular Constraints , 2012, ALT.
[25] Karl Kunisch,et al. A Bilevel Optimization Approach for Parameter Learning in Variational Models , 2013, SIAM J. Imaging Sci..
[26] Yaoliang Yu,et al. On Decomposing the Proximal Map , 2013, NIPS.
[27] Francis R. Bach,et al. Learning with Submodular Functions: A Convex Optimization Perspective , 2011, Found. Trends Mach. Learn..
[28] Justin Domke,et al. Learning Graphical Model Parameters with Approximate Marginal Inference , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[29] Andreas Krause,et al. From MAP to Marginals: Variational Inference in Bayesian Submodular Models , 2014, NIPS.
[30] Andreas Krause,et al. Advances in Neural Information Processing Systems (NIPS) , 2014 .
[31] Jimmy Ba,et al. Adam: A Method for Stochastic Optimization , 2014, ICLR.
[32] Thomas Brox,et al. Bilevel Optimization with Nonsmooth Lower Level Problems , 2015, SSVM.
[33] Andreas Krause,et al. Scalable Variational Inference in Log-supermodular Models , 2015, ICML.
[34] Jeff A. Bilmes,et al. Deep Submodular Functions: Definitions and Learning , 2016, NIPS.
[35] Ramón Fernández Astudillo,et al. From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification , 2016, ICML.
[36] J. Zico Kolter,et al. OptNet: Differentiable Optimization as a Layer in Neural Networks , 2017, ICML.
[37] K. S. Sesh Kumar,et al. Active-set Methods for Submodular Minimization Problems , 2015, J. Mach. Learn. Res..
[38] Vlad Niculae,et al. A Regularized Framework for Sparse and Structured Neural Attention , 2017, NIPS.
[39] Suvrit Sra,et al. Modular Proximal Optimization for Multidimensional Total-Variation Regularization , 2014, J. Mach. Learn. Res..