Average characteristic polynomials for multiple orthogonal polynomial ensembles

Multiple orthogonal polynomials (MOP) are a non-definite version of matrix orthogonal polynomials. They are described by a Riemann-Hilbert matrix Y consisting of four blocks Y"1","1, Y"1","2, Y"2","1 and Y"2","2. In this paper, we show that detY"1","1 (detY"2","2) equals the average characteristic polynomial (average inverse characteristic polynomial, respectively) over the probabilistic ensemble that is associated to the MOP. In this way we generalize the classical results for orthogonal polynomials, and also some recent results for MOP of type I and type II. We then extend our results to arbitrary products and ratios of characteristic polynomials. In the latter case an important role is played by a matrix-valued version of the Christoffel-Darboux kernel. Our proofs use determinantal identities involving Schur complements, and adaptations of the classical results by Heine, Christoffel and Uvarov.

[1]  E. Brezin,et al.  UNIVERSAL SINGULARITY AT THE CLOSURE OF A GAP IN A RANDOM MATRIX THEORY , 1998 .

[2]  Mark Adler,et al.  Moment Matrices and Multi-Component KP, with Applications to Random Matrix Theory , 2006, math-ph/0612064.

[3]  J. Baik On the Christoffel-Darboux Kernel for Random Hermitian Matrices with External Source , 2008, 0809.3970.

[4]  E. Brezin,et al.  Level spacing of random matrices in an external source , 1998 .

[5]  Arno B. J. Kuijlaars,et al.  Multiple orthogonal polynomials of mixed type and non-intersecting Brownian motions , 2005, J. Approx. Theory.

[6]  A. Aptekarev,et al.  Multiple orthogonal polynomials , 1998 .

[7]  Walter Van Assche,et al.  Multiple orthogonal polynomials, irrationality and transcendence , 1999 .

[8]  A. Kuijlaars Multiple orthogonal polynomial ensembles , 2009, 0902.1058.

[9]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[10]  Walter Van Assche,et al.  Riemann-Hilbert Problems for Multiple Orthogonal Polynomials , 2001 .

[11]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[12]  A.B.J. Kuijlaars,et al.  Random matrices with external source and multiple orthogonal polynomials , 2003 .

[13]  Universality of Correlation Functions of Hermitian Random Matrices in an External Field , 1997, cond-mat/9705044.

[14]  Mourad E. H. Ismail,et al.  Special functions 2000 : current perspective and future directions , 2001 .

[15]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[16]  L. Miranian Matrix-valued orthogonal polynomials on the real line: some extensions of the classical theory , 2005 .

[17]  N. Snaith,et al.  Random Matrix Theory and ζ(1/2+it) , 2000 .

[18]  A. S. Fokas,et al.  The Isomonodromy Approach to Matrix Models in 2 D Quantum Gravity , 2004 .

[19]  Alexei Borodin Biorthogonal ensembles , 1998 .

[20]  E. Strahov,et al.  Averages of Characteristic Polynomials in Random Matrix Theory , 2004 .

[21]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[22]  Edouard Brézin,et al.  Characteristic Polynomials of Random Matrices , 2000 .

[23]  G. Lagomasino,et al.  Mixed Type Multiple Orthogonal Polynomials for Two Nikishin Systems , 2008, 0812.1219.

[24]  Jeannette Van Iseghem,et al.  Algebraic Aspects of Matrix Orthogonality for Vector Polynomials , 1997 .

[25]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[26]  F. R. Gantmakher The Theory of Matrices , 1984 .

[27]  Yan V. Fyodorov,et al.  An exact formula for general spectral correlation function of random Hermitian matrices , 2002, math-ph/0204051.

[28]  Yan V. Fyodorov,et al.  Universal Results for Correlations of Characteristic Polynomials: Riemann-Hilbert Approach , 2002 .

[29]  L. Mirsky,et al.  The Theory of Matrices , 1961, The Mathematical Gazette.

[30]  Athanassios S. Fokas,et al.  The isomonodromy approach to matric models in 2D quantum gravity , 1992 .

[31]  V. B. Uvarov The connection between systems of polynomials orthogonal with respect to different distribution functions , 1969 .

[32]  Peter J. Forrester,et al.  A note on biorthogonal ensembles , 2008, J. Approx. Theory.

[33]  Eugene Strahov,et al.  Products and ratios of characteristic polynomials of random Hermitian matrices , 2003 .