Entry-faithful 2-neighbour transitive codes

We consider a code to be a subset of the vertex set of a Hamming graph. The set of $$s$$s-neighbours of a code is the set of vertices, not in the code, at distance $$s$$s from some codeword, but not distance less than $$s$$s from any codeword. A $$2$$2-neighbour transitive code is a code which admits a group $$X$$X of automorphisms which is transitive on the $$s$$s-neighbours, for $$s=1,2$$s=1,2, and transitive on the code itself. We give a classification of $$2$$2-neighbour transitive codes, with minimum distance $$\delta \geqslant 5$$δ⩾5, for which $$X$$X acts faithfully on the set of entries of the Hamming graph.

[1]  Victor Zinoviev,et al.  On linear completely regular codes with covering radius rho=1. Construction and classification , 2009, ArXiv.

[2]  A. Hora,et al.  Distance-Regular Graphs , 2007 .

[3]  Victor Zinoviev,et al.  New families of completely regular codes and their corresponding distance regular coset graphs , 2014, Des. Codes Cryptogr..

[4]  P. Cameron,et al.  PERMUTATION GROUPS , 2019, Group Theory for Physicists.

[5]  Cheryl E. Praeger,et al.  Completely Transitive Codes in Hamming Graphs , 1999, Eur. J. Comb..

[6]  Cheryl E. Praeger,et al.  On imprimitive rank 3 permutation groups , 2012, J. Lond. Math. Soc..

[7]  Cheryl E. Praeger,et al.  A classification of the maximal subgroups of the finite alternating and symmetric groups , 1987 .

[8]  Neil I. Gillespie,et al.  New characterisations of the Nordstrom-Robinson codes , 2012, 1205.3878.

[9]  Josep Rifà,et al.  On the nonexistence of completely transitive codes , 2000, IEEE Trans. Inf. Theory.

[10]  Alfred Bochert Ueber die Zahl der verschiedenen Werthe, die eine Function gegebener Buchstaben durch Vertauschung derselben erlangen kann , 1889 .

[11]  Cheryl E. Praeger,et al.  Diagonally neighbour transitive codes and frequency permutation arrays , 2012, 1204.2900.

[12]  Cheryl E. Praeger,et al.  Uniqueness of certain completely regular Hadamard codes , 2011, J. Comb. Theory, Ser. A.

[13]  Neil I. Gillespie,et al.  Complete transitivity of the Nordstrom-Robinson codes , 2012 .

[14]  Victor Zinoviev,et al.  On q-ary linear completely regular codes with ρ=2 and antipodal dual , 2010, Adv. Math. Commun..

[15]  Neil I. Gillespie,et al.  CHARACTERISATION OF A FAMILY OF NEIGHBOUR TRANSITIVE CODES , 2014, 1405.5427.

[16]  Cheryl E. Praeger,et al.  On imprimitive rank 3 permutation groups , 2010, J. Lond. Math. Soc..

[17]  Douglas R. Stinson,et al.  Combinatorial designs: constructions and analysis , 2003, SIGA.

[18]  Graham R. Sharp Algorithmic Recognition of Actions of 2-Homogeneous Groups on Pairs , 1998 .

[19]  Cheryl E. Praeger,et al.  Classification of a family of completely transitive codes , 2012, ArXiv.

[20]  Cheryl E. Praeger,et al.  The Inclusion Problem for Finite Primitive Permutation Groups , 1990 .

[21]  Cheryl E. Praeger,et al.  Neighbour transitivity on codes in Hamming graphs , 2013, Des. Codes Cryptogr..

[22]  van Hca Henk Tilborg,et al.  Uniformly packed codes , 1976 .

[23]  Victor Zinoviev,et al.  Families of completely transitive codes and distance transitive graphs , 2014, Discret. Math..

[24]  J. Dixon,et al.  Permutation Groups , 1996 .

[25]  de Ng Dick Bruijn A combinatorial problem , 1946 .

[26]  Victor Zinoviev,et al.  Nonexistence of completely transitive codes with error-correcting capability e>3 , 2001, IEEE Trans. Inf. Theory.

[27]  Peter J. Cameron,et al.  Permutation Groups: Frontmatter , 1999 .

[28]  P. Delsarte AN ALGEBRAIC APPROACH TO THE ASSOCIATION SCHEMES OF CODING THEORY , 2011 .

[29]  Arnold Neumaier,et al.  Completely regular codes , 1992, Discret. Math..

[30]  J. Conway,et al.  Atlas of finite groups : maximal subgroups and ordinary characters for simple groups , 1987 .

[31]  Marshall Hall Note on the Mathieu group M12 , 1962 .

[32]  Patrick Solé Completely regular codes and completely transitive codes , 1990, Discret. Math..

[33]  N. J. A. Sloane,et al.  Bounds for binary codes of length less than 25 , 1978, IEEE Trans. Inf. Theory.

[34]  William M. Kantor,et al.  k-Homogeneous groups , 1972 .

[35]  J. H. van Lint,et al.  Introduction to Coding Theory , 1982 .

[36]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .