On the Solution of Boundary Value Problems by Using Fast Generalized Approximate Inverse Banded Matrix Techniques

A class of finite difference schemes in conjunction with approximate inverse banded matrix techniques based on the concept of LU-type factorization procedures is introduced for computing fast explicit approximate inverses. Explicit preconditioned iterative schemes in conjunction with approximate inverse matrix techniques are presented for the efficient solution of banded linear systems. A theorem on the rate of convergence and estimates of the computational complexity required to reduce the L∞-norm of the error is presented. Applications of the method on linear and non-linear systems are discussed and numerical results are given.

[1]  Marcus J. Grote,et al.  Parallel Preconditioning with Sparse Approximate Inverses , 1997, SIAM J. Sci. Comput..

[2]  J. Ortega Introduction to Parallel and Vector Solution of Linear Systems , 1988, Frontiers of Computer Science.

[3]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[4]  George A. Gravvanis,et al.  A class of explicit preconditioned conjugate gradient methods for solving large finite element systems , 1992 .

[5]  George A. Gravvanis Approximate inverse banded matrix techniques , 1999 .

[6]  George A. Gravvanis Explicit preconditioned methods for solving 3d boundary-value problems by approximate inverse finite element matrix techniques , 1995, Int. J. Comput. Math..

[7]  George A. Gravvanis,et al.  A three-dimensional explicit preconditioned solver , 1996 .

[8]  O. Axelsson Iterative solution methods , 1995 .

[9]  Cornelis Vuik,et al.  GMRESR: a family of nested GMRES methods , 1994, Numer. Linear Algebra Appl..

[10]  George A. Gravvanis The rate of convergence of explicit approximate inverse preconditioning , 1996, Int. J. Comput. Math..

[11]  D. Evans Preconditioning Methods: Theory and Applications , 1983 .

[12]  George A. Gravvanis Explicit isomorphic iterative methods for solving arrow-type linear systems , 2000, Int. J. Comput. Math..

[13]  George A. Gravvanis Explicit preconditioned conjugate gradient schemes for solving biharmonic equations , 2000 .

[14]  George A. Gravvanis Domain Decomposition Approximate Inverse Preconditioning for Solving Fourth Order Equations , 2000, PDPTA.

[15]  H. V. D. Vorst,et al.  The rate of convergence of Conjugate Gradients , 1986 .

[16]  Elias A. Lipitakis,et al.  Numerical solution of non-linear elliptic boundary-value problems by isomorphic iterative methods , 1986 .

[17]  H. V. D. Vorst,et al.  A comparison of some GMRES-like methods , 1992 .

[18]  George A. Gravvanis,et al.  An approximate inverse matrix technique for arrowhead matrices , 1998, Int. J. Comput. Math..

[19]  G. Gravvanis Explicit Approximate Inverse Finite Element PreconditioningFor Solving Biharmonic Equations , 2000 .

[20]  Igor E. Kaporin,et al.  New convergence results and preconditioning strategies for the conjugate gradient method , 1994, Numer. Linear Algebra Appl..

[21]  Yvan Notay,et al.  On the convergence rate of the conjugate gradients in presence of rounding errors , 1993 .