The Effect of Large-Scale Structure on the SDSS Galaxy Three-Point Correlation Function

We present measurements of the normalized redshift-space three-point correlation function (3PCF) (Q(z)) of galaxies from the Sloan Digital Sky Survey (SDSS) main galaxy sample. These measurements were possible because of a fast new N-point correlation function algorithm (called npt) based on multiresolutional k-d trees. We have applied npt to both a volume-limited (36 738 galaxies with 0.05 = 10 h(-1)Mpc). If we exclude this supercluster, our observed Q(z) is in better agreement with that obtained from the 2-degree Field Galaxy Redshift Survey (2dFGRS) by other authors, thus demonstrating the sensitivity of these higher order correlation functions to large-scale structures in the Universe. This analysis highlights that the SDSS data sets used here are not 'fair samples' of the Universe for the estimation of higher order clustering statistics and larger volumes are required. We study the shape dependence of Q(z)(s, q, theta) as one expects this measurement to depend on scale if the large-scale structure in the Universe has grown via gravitational instability from Gaussian initial conditions. On small scales (s 10 h(-1)Mpc, we see considerable shape dependence in Q(z). However, larger samples are required to improve the statistical significance of these measurements on all scales.

[1]  The 2dF Galaxy Redshift Survey : higher-order galaxy correlation functions , 2004, astro-ph/0401434.

[2]  C. Baugh,et al.  Statistical analysis of galaxy surveys – II. The three-point galaxy correlation function measured from the 2dFGRS , 2005 .

[3]  Jeffrey D. Scargle,et al.  Statistical challenges in modern astronomy II , 1997 .

[4]  Y. Suto Exploring Nonlinear Gravitational Clustering Phenomena with Cosmological N-Body Simulations , 1993 .

[5]  Alan Uomoto,et al.  The [CLC][ITAL]u[/ITAL][/CLC][arcmin]′[CLC][ITAL]g[/ITAL][/CLC][arcmin]′[CLC][ITAL]r[/ITAL][/CLC][arcmin]′[CLC][ITAL]i[/ITAL][/CLC][arcmin]′[CLC][ITAL]z[/ITAL][/CLC][arcmin]′ Standard-Star System , 2002 .

[6]  F. Miller Maley,et al.  An Efficient Algorithm for Positioning Tiles in the Sloan Digital Sky Survey , 2001 .

[7]  V. Narayanan,et al.  Analysis of Systematic Effects and Statistical Uncertainties in Angular Clustering of Galaxies from Early Sloan Digital Sky Survey Data , 2001, astro-ph/0107416.

[8]  Aniruddha R. Thakar,et al.  The Third Data Release of the Sloan Digital Sky Survey , 2004 .

[9]  Joshua A. Frieman,et al.  The Bispectrum as a Signature of Gravitational Instability in Redshift Space , 1998, astro-ph/9808305.

[10]  Large-scale structure in the universe. , 1996, astro-ph/9612046.

[11]  O. Lahav,et al.  The 2dF Galaxy Redshift Survey: The bias of galaxies and the density of the Universe , 2001, astro-ph/0112161.

[12]  Robert C. Nichol,et al.  Higher Order Statistics from the Edinburgh/Durham Southern Galaxy Catalogue Survey. I. Counts in Cells , 1996 .

[13]  Alexander S. Szalay,et al.  Higher Order Moments of the Angular Distribution of Galaxies from Early Sloan Digital Sky Survey Data , 2002 .

[14]  Alexander S. Szalay,et al.  Galaxy Clustering in Early Sloan Digital Sky Survey Redshift Data , 2002 .

[15]  B. Jain,et al.  The three‐point correlation function in cosmology , 2002, astro-ph/0209167.

[16]  J. Einasto,et al.  Optical and X-Ray Clusters as Tracers of the Supercluster-Void Network. I. Superclusters of Abell and X-Ray Clusters , 2000, astro-ph/0012536.

[17]  F. M. Maley,et al.  An Efficient Targeting Strategy for Multiobject Spectrograph Surveys: the Sloan Digital Sky Survey “Tiling” Algorithm , 2001, astro-ph/0105535.

[18]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[19]  Yasushi Suto,et al.  Three-Dimensional Genus Statistics of Galaxies in the SDSS Early Data Release , 2002 .

[20]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: luminosity dependence of galaxy clustering , 2001, astro-ph/0105500.

[21]  et al,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[22]  B. Jain,et al.  How Many Galaxies Fit in a Halo? Constraints on Galaxy Formation Efficiency from Spatial Clustering , 2000, astro-ph/0006319.

[23]  J. A. Smith,et al.  SDSS data management and photometric quality assessment , 2004 .

[24]  R. Lupton,et al.  Astrometric Calibration of the Sloan Digital Sky Survey , 2002, astro-ph/0211375.

[25]  V. Narayanan,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample , 2002, astro-ph/0206225.

[26]  Alexander S. Szalay,et al.  Cosmological Parameters from Eigenmode Analysis of Sloan Digital Sky Survey Galaxy Redshifts , 2004, astro-ph/0401249.

[27]  Mamoru Doi,et al.  Estimating Fixed-Frame Galaxy Magnitudes in the Sloan Digital Sky Survey , 2002, astro-ph/0205243.

[28]  et al,et al.  Galaxy Clustering in Early SDSS Redshift Data , 2001, astro-ph/0106476.

[29]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[30]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[31]  The Bispectrum of IRAS Galaxies , 2000, astro-ph/0004087.

[32]  Three-Point Correlation Functions of SDSS Galaxies in Redshift Space: Morphology, Color, and Luminosity Dependence , 2004, astro-ph/0403638.

[33]  A. Szalay,et al.  Fourier Phase Analysis of SDSS Galaxies , 2005, astro-ph/0506194.

[34]  J. Frieman,et al.  The Projected Three-Point Correlation Function: Theory and Observations , 1999 .

[35]  J. Brinkmann,et al.  A Map of the Universe , 2003, astro-ph/0310571.

[36]  The 2dF Galaxy Redshift Survey: Voids and hierarchical scaling models , 2004, astro-ph/0401406.

[37]  The three-point function in large-scale structure: redshift distortions and galaxy bias , 2005, astro-ph/0501637.

[38]  J. Frieman,et al.  The Bispectrum of IRAS Redshift Catalogs , 2001 .

[39]  Ravi Sheth,et al.  Halo Models of Large Scale Structure , 2002, astro-ph/0206508.

[40]  Phillip James Edwin Peebles,et al.  Statistical analysis of catalogs of extragalactic objects. VII. Two- and three-point correlation functions for the high-resolution Shane-Wirtanen catalog of galaxies , 1977 .

[41]  Y. Jing,et al.  The Three-Point Correlation Function of Galaxies Determined from the Two-Degree Field Galaxy Redshift Survey , 2003, astro-ph/0311585.

[42]  J. Gunn,et al.  A Photometricity and Extinction Monitor at the Apache Point Observatory , 2001, astro-ph/0106511.

[43]  Gutti Jogesh Babu,et al.  Statistical Challenges of Astronomy , 2003 .

[44]  Francois Ochsenbein,et al.  Astronomical Data Analysis Software and Systems (ADASS) XIII , 2004 .

[45]  Minkowski Functionals of SDSS Galaxies I : Analysis of Excursion Sets , 2003, astro-ph/0304455.

[46]  Jaan Einasto,et al.  Large scale structure , 2000, astro-ph/0011332.

[47]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[48]  Topology Analysis of the Sloan Digital Sky Survey. I. Scale and Luminosity Dependence , 2005, astro-ph/0507059.

[49]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[50]  The three point correlation function of galaxies determined from the Las Campanas redshift survey , 1998, astro-ph/9802011.

[51]  D. P. Schneider,et al.  The Luminosity and Color Dependence of the Galaxy Correlation Function , 2005 .

[52]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: hierarchical galaxy clustering , 2004, astro-ph/0401405.

[53]  O. Lahav,et al.  Measuring our Universe from Galaxy Redshift Surveys , 2003, Living reviews in relativity.

[54]  Alexander S. Szalay,et al.  Fast Cosmic Microwave Background Analyses via Correlation Functions , 2001 .

[55]  A. Szalay,et al.  A New Class of Estimators for the N-Point Correlations , 1997, astro-ph/9704241.