Core–Shell Crystals of Porous Organic Cages

Abstract The first examples of core–shell porous molecular crystals are described. The physical properties of the core–shell crystals, such as surface hydrophobicity, CO2 /CH4 selectivity, are controlled by the chemical composition of the shell. This shows that porous core–shell molecular crystals can exhibit synergistic properties that out‐perform materials built from the individual, constituent molecules.

[1]  Yinghua Jin,et al.  Cage-templated synthesis of highly stable palladium nanoparticles and their catalytic activities in Suzuki–Miyaura coupling† †Electronic supplementary information (ESI) available: Detailed experimental materials, general synthetic procedures, TEM images, and spectral characterization data. See DOI: , 2017, Chemical science.

[2]  B. Alston,et al.  Computationally-Guided Synthetic Control over Pore Size in Isostructural Porous Organic Cages , 2017, ACS central science.

[3]  O. Yaghi,et al.  The atom, the molecule, and the covalent organic framework , 2017, Science.

[4]  Anita J. Hill,et al.  Centimetre-scale micropore alignment in oriented polycrystalline metal-organic framework films via heteroepitaxial growth. , 2017, Nature materials.

[5]  B. Gierczyk,et al.  Chiral, triformylphenol-derived salen-type [4 + 6] organic cages. , 2016, Organic & biomolecular chemistry.

[6]  A. Cooper,et al.  Porous organic cages: soluble, modular and molecular pores , 2016 .

[7]  T. Akita,et al.  Toward Homogenization of Heterogeneous Metal Nanoparticle Catalysts with Enhanced Catalytic Performance: Soluble Porous Organic Cage as a Stabilizer and Homogenizer. , 2015, Journal of the American Chemical Society.

[8]  A. Cooper,et al.  Porous Organic Cages for Gas Chromatography Separations , 2015 .

[9]  J. Lahann,et al.  Hierarchically functionalized magnetic core/multishell particles and their postsynthetic conversion to polymer capsules. , 2015, ACS nano.

[10]  R. Forgan,et al.  The surface chemistry of metal-organic frameworks. , 2015, Chemical communications.

[11]  Young‐Kwon Park,et al.  Metal-organic framework@microporous organic network: hydrophobic adsorbents with a crystalline inner porosity. , 2014, Journal of the American Chemical Society.

[12]  Gang Zhang,et al.  Organic cage compounds--from shape-persistency to function. , 2014, Chemical Society reviews.

[13]  S. Kitagawa,et al.  Functional Hybrid Porous Coordination Polymers , 2014 .

[14]  Nathaniel L Rosi,et al.  Design and preparation of a core-shell metal-organic framework for selective CO2 capture. , 2013, Journal of the American Chemical Society.

[15]  Tamoghna Mitra,et al.  Molecular shape sorting using molecular organic cages. , 2013, Nature chemistry.

[16]  P. Budd,et al.  Nanoporous Organic Polymer/Cage Composite Membranes , 2012, Angewandte Chemie.

[17]  A. Cooper,et al.  Porous organic alloys. , 2012, Angewandte Chemie.

[18]  S. Kitagawa,et al.  Targeted functionalisation of a hierarchically-structured porous coordination polymer crystal enhances its entire function. , 2012, Chemical communications.

[19]  Seth M Cohen,et al.  Postsynthetic methods for the functionalization of metal-organic frameworks. , 2012, Chemical reviews.

[20]  A. Cooper,et al.  Porous organic cage nanocrystals by solution mixing. , 2012, Journal of the American Chemical Society.

[21]  S. Kitagawa,et al.  Sequential functionalization of porous coordination polymer crystals. , 2011, Angewandte Chemie.

[22]  A. Cooper,et al.  Modular and predictable assembly of porous organic molecular crystals , 2011, Nature.

[23]  Arne Thomas Functional materials: from hard to soft porous frameworks. , 2010, Angewandte Chemie.

[24]  Arne Thomas Funktionsmaterialien: von harten zu weichen porösen Netzwerken , 2010 .

[25]  P. Wright,et al.  Structural Chemistry of Zeolites , 2010 .

[26]  Christian J. Doonan,et al.  Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks , 2010, Science.

[27]  Hae‐Kwon Jeong,et al.  Heteroepitaxial Growth of Isoreticular Metal−Organic Frameworks and Their Hybrid Films , 2010 .

[28]  A. Slawin,et al.  Porous organic cages. , 2009, Nature materials.

[29]  Keiji Nakagawa,et al.  Heterogeneously hybridized porous coordination polymer crystals: fabrication of heterometallic core-shell single crystals with an in-plane rotational epitaxial relationship. , 2009, Angewandte Chemie.

[30]  V. Valtchev,et al.  Core–Shell Zeolite Microcomposites , 2005 .

[31]  S. Kitagawa,et al.  Funktionale poröse Koordinationspolymere , 2004 .

[32]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[33]  J. Weitkamp Zeolites and catalysis , 2000 .

[34]  Wifredo Ricart,et al.  The version of record : , 2018 .

[35]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.