Mode properties of a coaxial multi‐layer hybrid surface plasmon waveguide

A novel type of coaxial circular multi-layer hybrid surface plasmonic waveguide is proposed and of which the mode properties are analyzed theoretically at the telecommunication wavelength of 1550 nm. Simulation results show that by tuning the size of the waveguide, the mode propagation properties could be effectively controlled to obtain enhanced mode confinement as well as weaker propagating loss. It is also found that the mode can be strongly localized in the middle low-index dielectric media layer with sub- or deep sub-wavelength scale. Further investigation proves that the mode propagation loss can be well compensated by replacing the high-index dielectric media with gain material to obtain longer propagation length with very tight mode confinement. The proposed hybrid structure can be used in nanophotonic waveguides, high-quality nanolasers, optical trapping, and biosensors.

[1]  Pierre Berini,et al.  Surface plasmon–polariton amplifiers and lasers , 2011, Nature Photonics.

[2]  C. Z. Ning,et al.  Giant modal gain, amplified surface plasmon-polariton propagation, and slowing down of energy velocity in a metal-semiconductor-metal structure , 2009 .

[3]  P. Berini,et al.  Plasmon polariton modes guided by a metal film of finite width. , 1999, Optics letters.

[4]  Byoungho Lee,et al.  Dispersion characteristics of channel plasmon polariton waveguides with step-trench-type grooves. , 2007, Optics express.

[5]  Xiaobo Yin,et al.  Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales , 2011 .

[6]  Stephan W Koch,et al.  Semiconductor-Laser Fundamentals , 1999 .

[7]  F. Capasso,et al.  The forces from coupled surface plasmon polaritons in planar waveguides. , 2009, Optics express.

[8]  Q. Gong,et al.  Long-range surface plasmon polariton modes with a large field localized in a nanoscale gap , 2011 .

[9]  J. Aitchison,et al.  Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends. , 2010, Optics express.

[10]  M. Gather,et al.  Advances in small lasers , 2014, Nature Photonics.

[11]  Sergey I. Bozhevolnyi,et al.  Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding , 2007 .

[12]  T. Ebbesen,et al.  Channel plasmon-polariton guiding by subwavelength metal grooves. , 2005, Physical review letters.

[13]  Yunsong Zhao,et al.  Coaxial hybrid plasmonic nanowire waveguides , 2010 .

[14]  Jinping Tian,et al.  Coaxial multi-layer hybrid plasmonic waveguide at subwavelength scale , 2014 .

[15]  Chia‐Chien Huang Hybrid Plasmonic Waveguide Comprising a Semiconductor Nanowire and Metal Ridge for Low-Loss Propagation and Nanoscale Confinement , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[16]  D. Pile,et al.  Channel plasmon-polariton in a triangular groove on a metal surface. , 2004, Optics letters.

[17]  Jinping Tian,et al.  Analysis of a Surface Plasmonic Waveguide of Three Circumscribed Circular Silver Rods , 2011, IEEE Journal of Quantum Electronics.

[18]  J. Dionne,et al.  Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization , 2006 .

[19]  Zheng Zheng,et al.  Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration. , 2009, Optics express.

[20]  M. Orenstein,et al.  Plasmonic modes in W-shaped metal-coated silicon grooves. , 2008, Optics express.

[21]  M. Asada,et al.  Gain and the threshold of three-dimensional quantum-box lasers , 1986 .

[22]  Zheng Zheng,et al.  Dielectrics Covered Metal Nanowires and Nanotubes for Low-Loss Guiding of Subwavelength Plasmonic Modes , 2013, Journal of Lightwave Technology.

[23]  Zheng Zheng,et al.  Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement. , 2010, Optics express.

[24]  Yeshaiahu Fainman,et al.  Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides. , 2004, Optics express.

[25]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[26]  Zheng Zheng,et al.  Low-loss silicon-based hybrid plasmonic waveguide with an air nanotrench for sub-wavelength mode confinement , 2011 .

[27]  Jing Zhang,et al.  Hybrid plasmonic waveguide with gain medium for lossless propagation with nanoscale confinement. , 2011, Optics letters.

[28]  Sailing He,et al.  A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. , 2009, Optics express.

[29]  Er-Ping Li,et al.  Hybrid Dielectric-Loaded Plasmonic Waveguide-Based Power Splitter and Ring Resonator: Compact Size and High Optical Performance for Nanophotonic Circuits , 2011 .

[30]  Jinping Tian,et al.  Efficient frequency-domain numerical analysis of modified surface plasmon waveguides formed by a metallic sleeve and coaxial rod , 2011 .

[31]  P. Berini Long-range surface plasmon polaritons , 2009 .

[32]  Q. Gong,et al.  Metallic Nanowire-Loaded Plasmonic Slot Waveguide for Highly Confined Light Transport at Telecom Wavelength , 2013, IEEE Journal of Quantum Electronics.

[33]  D S Citrin,et al.  Plasmon-polariton transport in metal-nanoparticle chains embedded in a gain medium. , 2006, Optics letters.

[34]  X. Zhang,et al.  A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation , 2008 .

[35]  Yeshaiahu Fainman,et al.  Low threshold gain metal coated laser nanoresonators. , 2008, Optics letters.

[36]  Qihuang Gong,et al.  Optical performance of one-dimensional hybrid metal–insulator–metal structures at telecom wavelength , 2013 .

[37]  Zheng Zheng,et al.  Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement. , 2011, Optics express.

[38]  Pierre Berini,et al.  Figures of merit for 2D surface plasmon waveguides and application to metal stripes. , 2007, Optics express.

[39]  Daru Chen,et al.  Cylindrical hybrid plasmonic waveguide for subwavelength confinement of light. , 2010, Applied optics.

[40]  Richard Soref,et al.  Sub-wavelength Plasmonic Modes in a Conductor-gap-dielectric System with a Nanoscale Gap References and Links , 2022 .

[41]  Guo Ping Wang,et al.  Gain-assisted time delay of plasmons in coupled metal ring resonator waveguides. , 2009, Optics express.

[42]  Sailing He,et al.  Novel surface plasmon waveguide for high integration. , 2005, Optics express.

[43]  Stefan A. Maier,et al.  Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides , 2006 .

[44]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[45]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.