Cluster Oriented Spatio Temporal Multidimensional Data Visualization of Earthquakes in Indonesia

Spatio temporal data clustering is challenge task. The result of clustering data are utilized to investigate the seismic parameters. Seismic parameters are used to describe the characteristics of earthquake behavior. One of the effective technique to study multidimensional spatio temporal data is visualization. But, visualization of multidimensional data is complicated problem. Because, this analysis consists of observed data cluster and seismic parameters. In this paper, we propose a visualization system, called as IES (Indonesia Earthquake System), for cluster analysis, spatio temporal analysis, and visualize the multidimensional data of seismic parameters. We analyze the cluster analysis by using automatic clustering, that consists of get optimal number of cluster and Hierarchical K-means clustering. We explore the visual cluster and multidimensional data in low dimensional space visualization. We made experiment with observed data, that consists of seismic data around Indonesian archipelago during 2004 to 2014. Keywords : Clustering, visualization, multidimensional data, seismic  parameters.

[1]  Francisco Martínez-Álvarez,et al.  Detecting precursory patterns to enhance earthquake prediction in Chile , 2015, Comput. Geosci..

[2]  Ali Ridho Barakbah,et al.  Determining Constraints of Moving Variance to Find Global Optimum and Make Automatic Clustering , 2004 .

[3]  David A. Yuena,et al.  Visualization of Earthquake Clusters over Multi-dimensional Space , 2007 .

[4]  Santiago Grijalva Multi-Dimensional, Multi-Scale Modeling and Algorithms for Integrating Variable Energy Resources in Power Networks , 2014 .

[5]  Studi Variasi Spatial Seismisitas Zona Subduksi Jawa , 2014 .

[6]  Gennady L. Andrienko,et al.  Exploratory spatio-temporal visualization: an analytical review , 2003, J. Vis. Lang. Comput..

[7]  Ali Ridho Barakbah,et al.  Centronit: Initial Centroid Designation Algorithm for K-Means Clustering , 2014 .

[8]  Ali Ridho Barakbah,et al.  Hierarchical K-means: an algorithm for centroids initialization for K-means , 2007 .

[9]  Jantien E. Stoter,et al.  5D Data Modelling: Full Integration of 2D/3D Space, Time and Scale Dimensions , 2010, GIScience.

[10]  STUDI SEISMOTEKTONIK SEBAGAI INDIKATOR POTENSI GEMPABUMI DI WILAYAH INDONESIA , 2015 .

[11]  Yehuda Ben-Zion,et al.  Multi-resolution clustering analysis and 3-D visualization of multitudinous synthetic earthquakes , 2003 .

[12]  Evan F. Bollig,et al.  Clustering and visualization of earthquake data in a grid environment , 2005 .

[13]  Andreas Buja,et al.  Interactive High-Dimensional Data Visualization , 1996 .

[14]  Jamileh Vasheghani Farahani Monitoring the Variations of bValue and Seismicity in the Makran Ranges, the Absence of a Notable Event in West of Makran Subduction Zone , 2014 .