on C ircuit C omplexity from COS MOE F T

In this article, we investigate the physical implications of the causality constraint via effective sound speed $c_s(\leq 1)$ on Quantum Circuit Complexity(QCC) in the framework of Cosmological Effective Field Theory (COSMOEFT) using the two-mode squeezed quantum states. This COSMOEFT setup is constructed using the St$\ddot{\text{u}}$ckelberg trick with the help of the lowest dimensional operators, which are broken under time diffeomorphism. In this setup, we consider only the contribution from two derivative terms in the background quasi de Sitter metric. Next, we compute the relevant measures of circuit complexity and their cosmological evolution for different $c_s$ by following two different approaches, Nielsen's and Covariance matrix method. Using this setup, we also compute the Von-Neumann and R\'enyi entropy, which finally establishes an underlying connecting relationship between the entanglement entropy and circuit complexity. Essentially, we study the behaviour of the circuit complexity measures and entanglement entropy with respect to the scale factor and $c_s$ and find various interesting unexplored features within the window, $0.024\leq c_s\leq 1$, which is supported by both causality and cosmological observation. Finally, we also comment on the connection between the circuit complexity, entanglement entropy and equilibrium temperature for different $c_s$ lying within the mentioned window.

[1]  Nilesh Pandey,et al.  Entanglement in interacting quenched two-body coupled oscillator system , 2022, Physical Review D.

[2]  Nilesh Pandey,et al.  Four‐mode Squeezed States in de Sitter Space: A Study With Two Field Interacting Quantum System , 2022, Fortschritte der Physik.

[3]  K. Aoki,et al.  The effective field theory of vector-tensor theories , 2021, Journal of Cosmology and Astroparticle Physics.

[4]  S. Chapman,et al.  Quantum computational complexity from quantum information to black holes and back , 2021, The European Physical Journal C.

[5]  S. S. Haque,et al.  Saturation of thermal complexity of purification , 2021, Journal of High Energy Physics.

[6]  S. Chapman,et al.  Complexity for Conformal Field Theories in General Dimensions. , 2021, Physical review letters.

[7]  Sayantan Choudhury,et al.  Circuit Complexity From Supersymmetric Quantum Field Theory With Morse Function , 2021, Symmetry.

[8]  S. Choudhury,et al.  Cosmological Krylov Complexity , 2022 .

[9]  R. de Mello Koch,et al.  Complexity from spinning primaries , 2021, Journal of High Energy Physics.

[10]  S. Choudhury,et al.  Circuit complexity as a novel probe of quantum entanglement: A study with black hole gas in arbitrary dimensions , 2021, Physical Review D.

[11]  J. Eisert Entangling Power and Quantum Circuit Complexity. , 2021, Physical review letters.

[12]  Sayantan Choudhury,et al.  The Cosmological OTOC: A New Proposal for Quantifying Auto-Correlated Random Non-Chaotic Primordial Fluctuations , 2021, Symmetry.

[13]  S. Chapman,et al.  Charged complexity and the thermofield double state , 2021, Journal of High Energy Physics.

[14]  Sayantan Choudhury,et al.  Circuit Complexity from Cosmological Islands , 2020, Symmetry.

[15]  Sayantan Choudhury,et al.  Chaos and complexity from quantum neural network. A study with diffusion metric in machine learning , 2020, Journal of High Energy Physics.

[16]  Arpan Bhattacharyya,et al.  Complexity from the reduced density matrix: a new diagnostic for chaos , 2020, Journal of High Energy Physics.

[17]  Sachin Panneer Selvam,et al.  Quantum aspects of chaos and complexity from bouncing cosmology: A study with two-mode single field squeezed state formalism , 2020, SciPost Physics Core.

[18]  S. S. Haque,et al.  Operator Complexity for Continuous Variable Systems , 2021 .

[19]  R. N. Das,et al.  THE GENERALIZED OTOC FROM SUPERSYMMETRIC QUANTUM MECHANICS: Study of Random Fluctuations from Eigenstate Representation of Correlation Functions , 2020, 2008.03280.

[20]  K. Hashimoto,et al.  Exponential growth of out-of-time-order correlator without chaos: inverted harmonic oscillator , 2020, Journal of High Energy Physics.

[21]  S. Choudhury : THE COSMOLOGICAL OTOC: Formulating New Cosmological Micro-Canonical Correlation Functions for Random Chaotic Fluctuations in Out-Of-Equilibrium Quantum Statistical Field Theory , 2020, Symmetry.

[22]  Arpan Bhattacharyya,et al.  Rise of cosmological complexity: Saturation of growth and chaos , 2020, 2005.10854.

[23]  R. Brandenberger,et al.  Entanglement entropy of cosmological perturbations , 2020, 2005.09688.

[24]  Robert C. Myers,et al.  Aspects of the first law of complexity , 2020, Journal of Physics A: Mathematical and Theoretical.

[25]  Arpan Bhattacharyya,et al.  Cosmological complexity , 2020, 2001.08664.

[26]  R. Myers,et al.  Complexity of mixed states in QFT and holography , 2019, Journal of High Energy Physics.

[27]  Arpan Bhattacharyya,et al.  Chaos and complexity in quantum mechanics , 2019, Physical Review D.

[28]  L. Susskind Three Lectures on Complexity and Black Holes , 2018, SpringerBriefs in Physics.

[29]  S. Chapman,et al.  Complexity for Charged Thermofield Double States , 2019, 1910.07508.

[30]  Hugo A. Camargo,et al.  Path Integral Optimization as Circuit Complexity. , 2019, Physical review letters.

[31]  R. Myers,et al.  First Law of Holographic Complexity. , 2019, Physical review letters.

[32]  B. Yoshida,et al.  Holographic complexity equals which action? , 2018, Journal of High Energy Physics.

[33]  S. Chapman,et al.  Holographic complexity for defects distinguishes action from volume , 2018, Journal of High Energy Physics.

[34]  J. Eisert,et al.  Complexity and entanglement for thermofield double states , 2018, SciPost Physics.

[35]  M. Heller,et al.  Complexity as a Novel Probe of Quantum Quenches: Universal Scalings and Purifications. , 2018, Physical review letters.

[36]  M. Flory,et al.  Complexity change under conformal transformations in AdS3/CFT2 , 2018, Journal of High Energy Physics.

[37]  J. Erdmenger,et al.  Holographic subregion complexity from kinematic space , 2018, Journal of High Energy Physics.

[38]  Matthew Headrick,et al.  Subsystem complexity and holography , 2018, Journal of High Energy Physics.

[39]  S. Choudhury,et al.  Quantum entanglement in de Sitter space from stringy axion: An analysis using α vacua , 2017, Nuclear Physics B.

[40]  Arpan Bhattacharyya,et al.  Circuit complexity in interacting QFTs and RG flows , 2018, Journal of High Energy Physics.

[41]  R. Myers,et al.  Circuit complexity for coherent states , 2018, Journal of High Energy Physics.

[42]  S. Choudhury Quantum Field Theory approaches to Early Universe Cosmology , 2018 .

[43]  T. Jacobson,et al.  Holographic complexity and volume , 2018, Journal of High Energy Physics.

[44]  J. Barbón,et al.  Terminal holographic complexity , 2018, Journal of High Energy Physics.

[45]  K. Hashimoto,et al.  Thoughts on holographic complexity and its basis dependence , 2018, Physical Review D.

[46]  R. Myers,et al.  Holographic complexity in Vaidya spacetimes. Part II , 2018, Journal of High Energy Physics.

[47]  R. Myers,et al.  Holographic complexity in Vaidya spacetimes. Part I , 2018, Journal of High Energy Physics.

[48]  Daniel W. F. Alves,et al.  Evolution of complexity following a quantum quench in free field theory , 2018, Journal of High Energy Physics.

[49]  R. Myers,et al.  Circuit complexity for free fermions , 2018, Journal of High Energy Physics.

[50]  Run-Qiu Yang,et al.  Holographic subregion complexity under a thermal quench , 2018, Journal of High Energy Physics.

[51]  Robie A. Hennigar,et al.  Complexity Growth Rate in Lovelock Gravity. , 2018, Physical review letters.

[52]  S. Bolognesi,et al.  On some universal features of the holographic quantum complexity of bulk singularities , 2018, Journal of High Energy Physics.

[53]  Rifath Khan,et al.  Circuit complexity in fermionic field theory , 2018, Physical Review D.

[54]  D. Marolf,et al.  Holographic complexity is nonlocal , 2018, 1801.01137.

[55]  Yixu Wang,et al.  Holographic complexity of Einstein-Maxwell-Dilaton gravity , 2017, Journal of High Energy Physics.

[56]  F. Pastawski,et al.  Toward a Definition of Complexity for Quantum Field Theory States. , 2017, Physical review letters.

[57]  Ying Zhao Complexity and boost symmetry , 2017, Physical Review D.

[58]  Adam R. Brown,et al.  Second law of quantum complexity , 2017, 1701.01107.

[59]  S. Choudhury CMB from EFT , 2017, 1712.04766.

[60]  C. Burgess Intro to Effective Field Theories and Inflation , 2017, 1711.10592.

[61]  Sotaro Sugishita,et al.  On the time dependence of holographic complexity , 2017, 1709.10184.

[62]  S. Choudhury,et al.  Entangled de Sitter from stringy axionic Bell pair I: an analysis using Bunch–Davies vacuum , 2017, 1708.02265.

[63]  R. Myers,et al.  Circuit complexity in quantum field theory , 2017, 1707.08570.

[64]  K. Hashimoto,et al.  Time evolution of complexity in Abelian gauge theories , 2017, 1707.03840.

[65]  S. Choudhury,et al.  Inflation to Structures: EFT all the way , 2017, 1706.08051.

[66]  S. Ross,et al.  Complexity in de Sitter space , 2017, 1706.03788.

[67]  Keiju Murata,et al.  Out-of-time-order correlators in quantum mechanics , 2017, 1703.09435.

[68]  S. Choudhury COSMOS-$$e'$$e′-soft Higgsotic attractors , 2017, 1703.01750.

[69]  S. Watson,et al.  Toward an effective field theory approach to reheating , 2017, 1701.01455.

[70]  S. Ross,et al.  Divergences in holographic complexity , 2016, 1612.05439.

[71]  Run-Qiu Yang Strong energy condition and complexity growth bound in holography , 2016, 1610.05090.

[72]  Adam R. Brown,et al.  Quantum complexity and negative curvature , 2016, 1608.02612.

[73]  Antonio Argandoña Inflation , 2016 .

[74]  Dean Carmi,et al.  On volumes of subregions in holography and complexity , 2016, Journal of High Energy Physics.

[75]  R. Myers,et al.  Complexity of formation in holography , 2016, 1610.08063.

[76]  L. Senatore,et al.  The Supersymmetric Effective Field Theory of Inflation , 2016, 1610.04227.

[77]  P. Nguyen,et al.  Noether charge, black hole volume, and complexity , 2016, 1610.02038.

[78]  Dean Carmi,et al.  On volumes of subregions in holography and complexity , 2016, 1609.02514.

[79]  Scott Aaronson,et al.  The Complexity of Quantum States and Transformations: From Quantum Money to Black Holes , 2016, Electron. Colloquium Comput. Complex..

[80]  S. Choudhury Field Theoretic Approaches To Early Universe , 2016, 1603.08306.

[81]  S. Choudhury,et al.  COSMOS-e’-GTachyon from string theory , 2015, 1511.05734.

[82]  Hayden Lee,et al.  Signs of Analyticity in Single-Field Inflation , 2015, 1502.07304.

[83]  L. Senatore,et al.  Boost breaking in the EFT of inflation , 2015, 1512.04100.

[84]  M. Crossley,et al.  Effective field theory of dissipative fluids , 2015, 1511.03646.

[85]  E. Rabinovici,et al.  Holographic complexity and spacetime singularities , 2015, 1509.09291.

[86]  M. Alishahiha Holographic Complexity , 2015, 1509.06614.

[87]  K. Sinha,et al.  A Model Independent Approach to (p)Reheating , 2015, 1507.06651.

[88]  Daniel A. Roberts,et al.  Localized shocks , 2014, 1409.8180.

[89]  S. Choudhury Can Effective Field Theory of inflation generate large tensor-to-scalar ratio within Randall–Sundrum single braneworld? , 2014, 1406.7618.

[90]  L. Susskind,et al.  Switchbacks and the Bridge to Nowhere , 2014, 1408.2823.

[91]  L. Susskind,et al.  Complexity and Shock Wave Geometries , 2014, 1406.2678.

[92]  L. Susskind Computational complexity and black hole horizons , 2014, 1402.5674.

[93]  A. Mazumdar,et al.  An accurate bound on tensor-to-scalar ratio and the scale of inflation , 2013, 1306.4496.

[94]  A. Mazumdar,et al.  Constraining N = 1 supergravity inflationary framework with non-minimal Kähler operators , 2014 .

[95]  A. Tolley,et al.  Effective field theory and non-Gaussianity from general inflationary states , 2012, 1212.1172.

[96]  S. Choudhury,et al.  DBI Galileon inflation in background SUGRA , 2012, 1208.4433.

[97]  G. Giorgadze Geometry of quantum computation , 2013 .

[98]  J. Donoghue The effective field theory treatment of quantum gravity , 2012, 1209.3511.

[99]  L. Hui,et al.  Effective field theory for hydrodynamics: Thermodynamics, and the derivative expansion , 2011, 1107.0731.

[100]  M. Zaldarriaga,et al.  The effective field theory of multifield inflation , 2010, Journal of High Energy Physics.

[101]  Cristopher Moore,et al.  The Nature of Computation , 2011 .

[102]  M. Zaldarriaga,et al.  Dissipative effects in the effective field theory of inflation , 2011, 1109.4192.

[103]  S. Tsujikawa,et al.  Generalized Galileon cosmology , 2010, 1008.4236.

[104]  M. Zaldarriaga,et al.  A naturally large four-point function in single field inflation , 2010, 1004.1201.

[105]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[106]  J. Khoury,et al.  Galileon Cosmology , 2009, 0905.1325.

[107]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[108]  S. Weinberg Effective field theory for inflation , 2008, 0804.4291.

[109]  Jared Kaplan,et al.  The Effective Field Theory of Inflation , 2007, 0709.0293.

[110]  Mile Gu,et al.  Quantum Computation as Geometry , 2006, Science.

[111]  Michael A. Nielsen,et al.  A geometric approach to quantum circuit lower bounds , 2005, Quantum Inf. Comput..

[112]  M. Beck Introductory Quantum Optics , 2005 .

[113]  E. Silverstein,et al.  DBI in the sky , 2004, hep-th/0404084.

[114]  H. Ruegg,et al.  The Stueckelberg Field , 2003, hep-th/0304245.

[115]  M. Zaldarriaga,et al.  Ghost Inflation , 2003, hep-th/0312100.

[116]  D. Choudhury,et al.  On the cosmological relevance of the tachyon , 2002, hep-th/0204204.

[117]  A. Mazumdar,et al.  Assisted inflation via tachyon condensation , 2001, hep-ph/0107058.

[118]  B. Holstein Introduction to effective field theory , 2000, nucl-th/0010015.

[119]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[120]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[121]  A. Pich Effective field theory: Course , 1998 .

[122]  R. Shankar,et al.  Effective Field Theory in Condensed Matter Physics , 1996 .

[123]  J. Donoghue Introduction to the Effective Field Theory Description of Gravity , 1995, gr-qc/9512024.

[124]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[125]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[126]  Joyce,et al.  Inflation and squeezed quantum states. , 1993, Physical review. D, Particles and fields.

[127]  Grosse-Knetter,et al.  Unitary gauge, Stueckelberg formalism, and gauge-invariant models for effective Lagrangians. , 1992, Physical review. D, Particles and fields.