On the Betti Numbers of Chessboard Complexes
暂无分享,去创建一个
[1] J. Friedman,et al. Computing Betti Numbers via Combinatorial Laplacians , 1996, STOC '96.
[2] R. Ho. Algebraic Topology , 2022 .
[3] J. W. L. GLAISHER. American Journal of Mathematics, Pure and Applied , 1880, Nature.
[4] B. Eckmann. Harmonische Funktionen und Randwertaufgaben in einem Komplex , 1944 .
[5] P. Diaconis. Group representations in probability and statistics , 1988 .
[6] A. Odlyzko,et al. Random Shuffles and Group Representations , 1985 .
[7] R. Bacher. Minimal Eigenvalue of the Coxeter Laplacian for the Symmetrical Group , 1994 .
[8] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[9] James R. Munkres,et al. Elements of algebraic topology , 1984 .
[10] V. K. Patodi,et al. Riemannian Structures and Triangulations of Manifold , 1976 .
[11] P. D. Val. The Theory and Applications of Harmonic Integrals , 1941, Nature.
[12] László Lovász,et al. Chessboard Complexes and Matching Complexes , 1994 .
[13] Philip J. Hanlon,et al. A random walk on the rook placements on a Ferrers board , 1996, Electron. J. Comb..
[14] P. Garst,et al. Cohen-macaulay complexes and group actions. , 1979 .
[15] Sinisa T. Vrecica,et al. The Colored Tverberg's Problem and Complexes of Injective Functions , 1992, J. Comb. Theory, Ser. A.
[16] J. Dodziuk. Finite-difference approach to the Hodge theory of harmonic forms , 1976 .
[17] W. V. Hodge,et al. The Theory and Applications of Harmonic Integrals , 1941 .