On the Betti Numbers of Chessboard Complexes

In this paper we study the Betti numbers of a type of simplicial complex known as a chessboard complex. We obtain a formula for their Betti numbers as a sum of terms involving partitions. This formula allows us to determine which is the first nonvanishing Betti number (aside from the 0-th Betti number). We can therefore settle certain cases of a conjecture of Björner, Lovász, Vrećica, and Živaljević in [2]. Our formula also shows that all eigenvalues of the Laplacians of the simplicial complexes are integers, and it gives a formula (involving partitions) for the multiplicities of the eigenvalues.

[1]  J. Friedman,et al.  Computing Betti Numbers via Combinatorial Laplacians , 1996, STOC '96.

[2]  R. Ho Algebraic Topology , 2022 .

[3]  J. W. L. GLAISHER American Journal of Mathematics, Pure and Applied , 1880, Nature.

[4]  B. Eckmann Harmonische Funktionen und Randwertaufgaben in einem Komplex , 1944 .

[5]  P. Diaconis Group representations in probability and statistics , 1988 .

[6]  A. Odlyzko,et al.  Random Shuffles and Group Representations , 1985 .

[7]  R. Bacher Minimal Eigenvalue of the Coxeter Laplacian for the Symmetrical Group , 1994 .

[8]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[9]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[10]  V. K. Patodi,et al.  Riemannian Structures and Triangulations of Manifold , 1976 .

[11]  P. D. Val The Theory and Applications of Harmonic Integrals , 1941, Nature.

[12]  László Lovász,et al.  Chessboard Complexes and Matching Complexes , 1994 .

[13]  Philip J. Hanlon,et al.  A random walk on the rook placements on a Ferrers board , 1996, Electron. J. Comb..

[14]  P. Garst,et al.  Cohen-macaulay complexes and group actions. , 1979 .

[15]  Sinisa T. Vrecica,et al.  The Colored Tverberg's Problem and Complexes of Injective Functions , 1992, J. Comb. Theory, Ser. A.

[16]  J. Dodziuk Finite-difference approach to the Hodge theory of harmonic forms , 1976 .

[17]  W. V. Hodge,et al.  The Theory and Applications of Harmonic Integrals , 1941 .