On cyclically-interval edge colorings of trees

Abstract. For an undirected, simple, finite, connected graph G, we denote by V ( )and E(G) the sets of its vertices and edges, respectively. A function ϕ : E(G) →{1,2,...,t} is called a proper edge t-coloring of a graph G if adjacent edges arecolored differently and each of t colors is used. An arbitrary nonempty subset ofconsecutive integers is called an interval. If ϕ is a proper edge t-coloring of a graphG and x ∈ V (G), then S G (x,ϕ) denotes the set of colors of edges of G which areincident with x. A proper edge t-coloring ϕ of a graph G is called a cyclically-intervalt-coloring if for any x ∈ V(G) at least one of the following two conditions holds: a)S G (x,ϕ) is an interval, b) {1,2,...,t}\S G (x,ϕ) is an interval. For any t ∈ N, let M t be the set of graphs for which there exists a cyclically-interval t-coloring, and letM≡[ t≥1 M t .For an arbitrary tree G, it is proved that G ∈ Mand all possible values of t are foundfor which G ∈ M t .Mathematics subject classification: 05C05, 05C15.Keywords and phrases: tree, interval edge coloring, cyclically-interval edge color-ing.

[1]  C. J. Casselgren,et al.  Some results on interval edge colorings of ( α , β )-biregular bipartite graphs , 2007 .

[2]  Rafayel Kamalian On a number of colors in cyclically interval edgecolorings of trees , 2010 .

[3]  Armen S. Asratian,et al.  Some results on interval edge colorings of (a, B)-biregular bipartitie graphs , 2006 .

[4]  Marek Kubale,et al.  On the Deficiency of Bipartite Graphs , 1999, Discret. Appl. Math..

[5]  Krzysztof Giaro The complexity of consecutive D-coloring of bipartite graphs: 4 is easy, 5 is hard , 1997, Ars Comb..

[6]  A. V. Pyatkin Interval coloring of (3,4)-biregular bipartite graphs having large cubic subgraphs , 2004 .

[7]  Petros A. Petrosyan Interval edge-colorings of complete graphs and n-dimensional cubes , 2010, Discret. Math..

[8]  Petros A. Petrosyan,et al.  Interval Edge Colorings of Mobius Ladders , 2007, ArXiv.

[9]  James B. Orlin,et al.  Cyclic Scheduling via Integer Programs with Circular Ones , 1980, Oper. Res..

[10]  Li Xiao On the Chromatic Index of a Multigraph , 2001 .

[11]  Alexander Neumann,et al.  On cyclic sequence types for constructing cyclic schedules , 1985, Z. Oper. Research.

[12]  Petros A. Petrosyan,et al.  A generalization of interval edge-colorings of graphs , 2010, Discret. Appl. Math..

[13]  Dominique de Werra,et al.  Compact Cylindrical Chromatic Scheduling , 1991, SIAM J. Discret. Math..

[14]  Fan Yang,et al.  Interval coloring of (3, 4)-biregular bigraphs having two (2, 3)-biregular bipartite subgraphs , 2011, Appl. Math. Lett..

[15]  Raffi R. Kamalian Interval colorings of complete bipartite graphs and trees , 2013, ArXiv.

[16]  Armen S. Asratian,et al.  Interval colorings of edges of a multigraph , 2014, ArXiv.

[17]  Denis Hanson,et al.  On interval colourings of bi-regular bipartite graphs , 1998, Ars Comb..

[18]  Armen S. Asratian,et al.  A sufficient condition for interval edge colorings of (4,3)-biregular bipartite graphs , 2006 .

[19]  Gerhard J. Woeginger,et al.  Graph colorings , 2005, Theor. Comput. Sci..

[20]  Armen S. Asratian,et al.  Investigation on Interval Edge-Colorings of Graphs , 1994, J. Comb. Theory, Ser. B.

[21]  D. West Introduction to Graph Theory , 1995 .

[22]  Armen S. Asratian,et al.  On Path Factors of (3, 4)-Biregular Bigraphs , 2007, Graphs Comb..

[23]  Douglas B. West,et al.  Proper path‐factors and interval edge‐coloring of (3,4)‐biregular bigraphs , 2007, J. Graph Theory.

[24]  Carl Johan Casselgren A Note on Path Factors of (3,4)-Biregular Bipartite Graphs , 2011, Electron. J. Comb..

[25]  R. Häggkvist,et al.  Bipartite graphs and their applications , 1998 .

[26]  Tommy R. Jensen,et al.  Graph Coloring Problems , 1994 .